INTRODUCTION

1.1 Hydraulics:

Hydraulics (this word has been derived from a Greek word 'Hudour' which means
water)

Fluid Mechanics:

Fluid mechanics may be defined as that branch of Engineering-science which deals
with the behavior of fluid under the conditions of rest and motion.

The fluid mechanics may be divided into two parts: Statics and dynamics.

Statics: The study of incompressible fluids under static conditions.

Dynamics: It deals with the relations between velocities, accelerations of fluid with
the forces or energy causing them.

Fluid
A fluid is a substance which deforms continuously when subjected to external
shearing force.
A fluid has the following characteristics:
1. It has no definite shape of its own, but conforms to the shape of the containing vessel.
2. Even a small amount of shear force exerted on a liquid/fluid will cause a
deformation which continues as long as the force continues to be applied.
A fluid may be classified as follows:

a) (i) Liquid (ii) Gas (iii) Vapour.

b) (i) Ideal fluids (ii) Real fluids.

Liquid: It possesses a definite volume

As the contraction of volume of a liquid under compression is extremely small, it is
usually ignored and the liquid is assumed to be incompressible.

A liquid will withstand a slight amount of tension due to molecular attraction between
the particles which will cause an apparent shear resistance, between two adjacent
layers. This phenomenon is known as viscosity.

Gas: It possesses no definite volume and is compressible.

Vapour. It is a gas whose temperature and pressure are such that it is very near to the
liquid state (e.g., steam).

Ideal fluids: An ideal fluid is one which has no viscosity and surface tension and is
incompressible. In true sense no such fluid exists in nature. However fluids which
have low viscosities such as water and air can be treated as ideal fluids under certain
conditions. The assumption of ideal fluids helps in simplifying the mathematical
analysis.

Real fluids: A real practical fluid is one which has viscosity, surface tension and
compressibility in addition to the density. The real fluids are actually available in
nature.

Solid Liquid Gas
Holds Shape Shape of Container Shape of Container

Fixed Volume Fixed Volume Volume of Container
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1.2 Dimension: Generalization of “unit” telling us what kind of units are involved in
a quantitative statement.
The primary quantities of fluid are:

Table 1 Basic Dimensions and Their Units

Quantity Dimension SI Units English Units
Length [ L meter m foot fi
Mass m M kilogram kg slug  slug
Time 1t T second s second  sec
Temperature T e kelvin K Rankine R
Plane angle radian rad radian rad

Table 2 Derived Dimensions and Their Units

Quantity Dimension 51 Units English Units
Area A L m? fi*

Volume' 4+ L m® or L (liter) fit?

Velocity V LT m/s ft/sec
Acceleration a L m/s* fi/sec

Force F MLIT? kg -mfs® or N slug - fifsec” or Ib
Density  p MIL? kg/m' slug/ft’
Specific weight ¥ MILAT? N/m? b/t
Frequency f T 5! seg”!
Pressure  p MILT? Nim* or Pa Ibif

Stress T MILT* N/m* or Pa Ib/ft*
Surface tension @ MIT? MN/m Ib/ft

Work W MLYT N-m or J ft-Ib
Energy £ MLAT N.-m or J ft-Ib

Heat rate Q MLYT Jis Btu/sec
Torque T MLYT N-m ft-Ib

Power W MLIT Jis or W ft - Ibfsec
Mass flux i MiT kgfs slug/sec
Flow rate (0 LT m'/s ft'/sec
Specific heat ¢ Lre Jkg- K Btu/slug - °R
Viscosity MILT N - s/m? Ib - sec/fi?
Kinematic viscosity v LT /s ft*fsec

*We use the special symbal + to denote volume and Vio denote velocity.



I'able 3 | Multiplier factors for SI units.

Multiplier Prefix Abbreviation
1012 tera T
10° giga G
10% mega M
10° kilo k
107 hecto h
102 centi c
103 milli m
100 micro 7
1077 nano 1
10712 pico
10718 atto a

1.3 PHYSICAL PROPERTIES OF FLUIDS

1.3.1 Density
1. Mass density

The density (also known as mass density or specific mass) of a liquid may be defined
as the mass per unit volume (mT) at a standard temperature and pressure. It is usually

denoted by p (rho).
Its units are kg/m*i.e. p = (mT)
2. Weight density

The weight density (also known as specific weight) is defined as the weight per unit
volume at the standard temperature and pressure. It is usually denoted by (w).

w=p.g

kg
m3

3. Specific volume
It is defined as volume per unit mass of fluid. It is denoted by v. Mathematically,
vV 1 md

vV=—=— —_—
m p kg
1.3.2 Specific Gravity
Specific gravity is the ratio of the specific weight of the liquid to the specific weight
of a standard fluid. It is dimensionless and has no units. It is represented by S.
For liquids, the standard fluid is pure water at 4°C.

Specific weight of liquid _ Wiiquid

S . . 't e -
pecific gravity Specific weight of pure water Wy, gter

Ilustrative Example
Calculate the specific weight, specific mass, specific volume and specific gravity of a
liquid having a volume of 6 m® and weight of 44 kN.
Solution:
Volume of the liquid = 6 m®
Weight of the liquid = 44 kN

Specific weight, w: w = Weightof liquid _ 14

— =733 kN/m?

volume of liquid T 6




Specific mass or mass density, : p = % = %811000 = 747.5 kg/m?3
Specific volume, v= % = % = ﬁ = 0.00134 m3/kg
Specific Gravity, S s = Yliquid _ 7.333

Wwater 9.81

1.3.3 Viscosity

Viscosity may be defined as the property of a fluid which determines its resistance to
shearing stresses. It is a measure of the internal fluid friction which causes resistance
to flow. Viscosity of fluids is due to cohesion and interaction between particles.

Refer Fig(2). When two layers of fluid, at a distance dy, move one over the other at
different velocities, say u and u + du, the viscosity together with relative velocity
causes a shear stress acting between the fluid layers. The top layer causes a shear
stress on the adjacent lower layer while the lower layer causes a shear stress on the

Upper layer
Lower layer
dy
v v
u
du
I Solid boundary
T

H———p
Fig. 2 Velocity variation near a solid boundary,

adjacent top layer. This shear stress is proportional to the rate of change of velocity
with respect to y. It is denoted by 7 (called Tau).
Mathematically

Or

where, u = Constant of proportionality and is known as coefficient of dynamic
viscosity or only viscosity.
So




Units of Viscosity:
In S.1. Units: N.s/m?

force/area force/length?  force X time| N.s
ﬂ = = = =
] 1 1 length? m?
(length/tlme) X W time
The unit of viscosity is also called poise, One poise = 1—10N.s/m2

Note. The viscosity of water at 20°C is %0 poise or one centipoise.

Kinematic Viscosity:
Kinematic viscosity is defined as the ratio between the dynamic viscosity and density
of fluid
It is denoted by v (called nu). Mathematically:
p=t
- - - - - p
Units of kinematic viscosity:

In SI units: m?%/s
Or stokes, one stokes = 0.0001 m?/s

Newton's Law of Viscosity

This law states that the shear stress (z) on a fluid element layer is directly proportional
to the rate of shear strain. The constant of proportionality is called the co-efficient of
viscosity.

T=,u.5 1

Types of fluids
The fluids may be of the following
‘Refer to Fig. (3)
1. Newtonian fluids. These fluids follow Newton's viscosity equation (i.e. eq. 1). For
such fluids u does not change with rate of deformation. [ Examples. Water, kerosene,
air].
Newtonian fluids: T = u.d—u
dy

2. Non-Newtonian fluids, fluids which do not follow the linear relationship between
shear stress and rate of deformation given by eqgn. 1 are termed as non-Newtonian
fluids. Such fluids relatively uncommon. [ Examples. Solutions or suspensions, mud,
blood]. These fluids are generally complex mixtures.

n
Non-Newtonian fluids: T = pu. (Z_Z)
3. Plastic fluids. its non-Newtonian fluid These substances are represented by straight
line intersecting the vertical axis Refer to Fig.(3).
4. ldeal fluid. An ideal fluid is one which is incompressible and has zero viscosity (or
in other words shear stress is always zero regardless of the motion of the fluid). Thus
an ideal fluid is represented by the horizontal axis (z = 0).
Ideal fluid: =0
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Fig. 3 Variation of shear stess with velocity gradient.

Effect of Temperature on Viscosity

Viscosity is effected by temperature. The viscosity of liquids decreases but that of
gases increases with increase in temperature. This is due to the reason that in liquids
the shear stress is due to the inter-molecular cohesion which decreases with increase
of temperature. In gases the inter-molecular cohesion is negligible and the shear stress
is due to exchange of momentum of the molecules, normal to the direction of motion.
The molecular activity increases with rise in temperature and so does the viscosity of
gas.

Effect of Pressure on Viscosity

The viscosity under ordinary conditions is not appreciably affected by the changes in
pressure. However, the viscosity of some oils has been found to increase with increase
in pressure.

1.3.4 Surface tension

It results from the attractive forces between molecules. It allows steel to float, droplets
to form, and small droplets and bubbles to be spherical. Consider the free-body
diagram of a spherical droplet and a bubble, as shown in Fig. (4).

The pressure force inside the droplet balances the force due to surface tension around
the circumference:

Prr? = 2nro
So

p=""
r



(a)

Figure 4  Free-body diagrams of (a) a droplet and (b) a bubble.

Notice that in a bubble there are two surfaces so that the force balance provides

40
P=—

r
So, if the internal pressure is desired, it is important to know if it is a droplet or a
bubble.
A second application where surface tension causes an interesting result is in the rise of
a liquid in a capillary tube. The free-body diagram of the water in the tube is shown in
Fig. (5). Summing forces on the column of liquid gives
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Figure 5  The rise of a liquid in a small tube.
DZ

onD cosB = pgTh

where the right-hand side of the equation is the weight W. This provides the height
the liquid will climb in the tube:
_ 4.0.cosB

~ w.D



HNlustrative Example
A machine creates small 1.0-mm-diameter bubbles of 20°C-water. Estimate the
pressure that exists inside the bubbles.

Solution
Bubbles have two surfaces leading to the following estimate of the pressure:

40 4x0.0736

p= = = 580 Pa
r 0.0005

where the surface tension was taken from Table

1.3.5 Vapor pressure

Molecules escape and reenter a liquid that is in contact with a gas, such as water in
contact with air. The vapor pressure is that pressure at which there is equilibrium
between the escaping and reentering molecules. If the pressure is below the vapor
pressure, the molecules will escape the liquid,; it is called boiling when water is heated
to the temperature at which the vapor pressure equals the atmospheric pressure.

1.4 Useful Information

1-The shear stress [symbol: T (tau)]
It is the force per unit surface area that resists the sliding of the fluid layers. The
common units used of shear stress is (N/m? = Pa)

2-The pressure [symbol: P]

It is the force per unit cross sectional area normal to the force direction.

The common units used of shear stress is (N/m? = Pa), (atm) (bar) (Psi) (mmHg). The
pressure difference between two points refers to (AP).

The pressure could be expressed as liquid height (or head) (h)

3-The energy [symbol: E]

Energy is defined as the capacity of a system to perform work or produce heat.

There are many types of energy such as [Internal energy (U), Kinetic energy (K.E),
Potential energy (P.E), Pressure energy (Prs.E), and others.

The common units used for energy is (J = N.m), (Btu), (cal).

The energy could be expressed in relative quantity per unit mass or mole (J/kg or
mol).

4-The Power [symbol: P]
It is the energy per unit time. The common units used for Power is (W =J/s)

5- The flow rate
5.1-Volumetric flow rate [symbol: Q]
It is the volume of fluid transferred per unit time.



Q =ud
where A: is the cross sectional area of flow normal to the flow direction. The common
units used for volumetric flow is (m%/s), (cm?/s), (ft* /s).

5.2-Mass flow rate [symbol: m]

It is the mass of fluid transferred per unit time.
m=Qp=uAlp

The common units used is (kg/s), (g/s), (Ib/s).

1.5 Important Laws

1-Law of conservation of mass
“ The mass can neither be created nor destroyed, and it cannot be created from
nothing”

2-Law of conservation of energy (First law of thermodynamics)
“ The energy can neither be created nor destroyed, though it can be transformed from
one form into another”

Newton’s Laws of Motion
Newton has formulated three law of motion, which are the basic assumption on which
the whole system of dynamics is based.

3-Newton’s first laws of motion
“Everybody continues in its state of rest or of uniform motion in a straight line, unless
it is acted upon by some external forces”

4-Newton’s second laws of motion

“The rate of change in momentum is directly proportional to the impressed force and
takes place in the same direction in which the force acts”[momentum = mass X
velocity]

5-Newton’s third laws of motion
“To every action, there is always an equal and opposite reaction”



CHAPTER TWO

FLUID STATICS

The subject of fluid statics involves fluid problems in which there is no relative
motion between fluid particles. If no relative motion exists between particles of a
fluid, viscosity can have no effect.

Pressure-Density-Height Relationships.
The fundamental equation of fluid statics is that relating pressure, density, and vertical
distance in a fluid. This equation may be derived readily by considering the vertical
equilibrium of an element of fluid such as the small cube of Fig. 2.1. Let this cube be
differentially small and have dimensions dx, dy, and dz, and assume that the density of
the fluid in the cube is uniform. If the pressure upward on the bottom face of this cube
is p, the force due to this pressure will be given by (p dx dy). Assuming an increase
of pressure in the positive direction of z, the pressure downward on the top face of the

cube will be (p +Z—Zdz), and the force due to this pressure will be
(p + %dz) dx dy. The other vertical force involved is the weight, dW, of the cube,
given by

dW = wdxdy dz
The vertical equilibrium of the cube will be expressed by
d
(p + —pdz)dxdy+wdxdydz—pdxdy=0

dz
This will be —

d }

the fundamental equation of fluid statics, which must
be integrated for the solution of engineering P
problems. Such integration may be accomplished by

transposing the terms w and dz, resulting in v }

a| |
n

which may be integrated as follows :

jpldp_
W =

P2 .
Gives

fp
- - - - - pz
in which p, is the greater pressure existing at the

lower point 1, p, the lesser pressure existing at the
upper point 2, and h the vertical distance between

P e e

e -

these points. The integration of the left-hand side of )

the equation cannot be carried out until w = f(p) Fig2.1

is known. For gases this relationship may be obtained from certain laws of

thermodynamics. For liquids the specific weight, w, is sensibly constant allowing
integration of the equation to

b1 " P2 _ Ah or p; —p, = wAh = pgAh (D




permitting ready calculation of the increase in pressure in a liquid as depth is gained.
It should be noted that equation 1 embodies certain basic and familiar facts
concerning fluids at rest. It shows that, if h = 0, the pressure difference is zero and
thus pressure is constant over horizontal planes in a fluid.

Equation 1 also indicates the fact that pressure at a point in a liquid of given density is
dependent solely upon the height of the liquid above the point, allowing this vertical
height, or "head," of liquid to be used as an indication of pressure. Thus pressures
maybe quoted in "cm of mercury,” "meter of water/" etc.

Pressure in a Fluid

In Figure (2.2) a stationary column of fluid of height (h,) and cross-sectional area A,

where A=A,=A1=A,, is shown. The pressure above the fluid is P,, it could be the

pressure of atmosphere above the fluid. The fluid at any point, say h;, must support all

the fluid above it. It can be shown that the forces at any point in a nonmoving or static

fluid must be the same in all directions. Also, for a fluid at rest, the pressure or (force

/ unit area) in the same at all points with the same elevation. For example, at h; from

the top, the pressure is the same at all points on the cross-sectional area A;.

The total mass of fluid for hy, height and p density is: (h2 A p) (kg)

The pressure is defined as (P = F/A = h, p g) (N/m? or Pa)

So the total force of the fluid on area (A) due to the fluid only is: -
F = h,Apg(N)

This is the pressure on A, due to the weight of the fluid column

above it. However to get the total pressure P, on A,, the pressure

P, on the top of the fluid must be added,

i.e.P, = hypg + P, (N/m2ori {F---
Thus to calculate Pq:

P, = hypg + P, (N/m? or Pa P
The pressure difference between points 1 and 2 is: - l
Po—P1=(h2p g+ Po)—(h1p g+ Po) A
=>P,—Pi=(-hypg see eq.l
Since it is vertical height of a fluid that determines the pressure in Fig. 2.2

a fluid, the shape of the vessel does not affect the pressure. For
example in Figure (2.3) the pressure P; at the bottom of all three vessels is the same

L L I
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Figure 2 3 Pressure in vessel of various shapes.

and equal to (hy p g + Py).

Absolute and Relative Pressure

The term pressure is sometimes associated with different terms such as atmospheric,
gauge, absolute, and vacuum. The meanings of these terms have to be understood well
before solving problems in fluid mechanics.

=)

|I.:



1-Atmospheric Pressure

It is the pressure exerted by atmospheric air on the earth due to its weight. This
pressure is change as the density of air varies according to the altitudes. Greater the
height lesser the density. Also it may vary because of the temperature and humidity of
air. Hence for all purposes of calculations the pressure exerted by air at sea level is
taken as standard and that is equal to: -

1 atm = 1.01325 bar = 101.325 kPa

2-Gauge Pressure or Positive Pressure
It is the pressure recorded by an instrument. This is always above atmospheric. The
zero mark of the dial will have been adjusted to atmospheric pressure.

3-Vacuum Pressure or Negative Pressure
This pressure is caused either artificially or by flow conditions. The pressure will be
less than the atmospheric pressure.

4-Absolute Pressure

Absolute pressure is the algebraic sum of atmospheric pressure and gauge pressure.
Atmospheric pressure is usually considered as the datum line and all other pressures
are recorded either above or below it.

Gauge pressure hine
S S S —
Pg
Atmospheric pressure line
=Ty o= ==
latm + Pg Pv . ) T
Vacuum pressure line
------- L L P LR 1 atm
latim - Pv
| Absolute zero pressure line

Fig2.4
Absolute Pressure = Atmospheric Pressure + Gauge Pressure

Absolute Pressure = Atmospheric Pressure — Vacuum Pressure
For example if the vacuum pressure is 0.3 atm

Absolute pressure = 1.0 — 0.3 = 0.7 atm

Note: -

Barometric pressure is the pressure that recorded from the barometer (apparatus used
to measure atmospheric pressure).

3.4 Head of Fluid

Pressures are given in many different sets of units, such as N/m?, or Pa. However a
common method of expressing pressures is in terms of head (m, cm, mm) of a
particular fluid. This height or head of the given fluid will exert the same pressure as
the pressures it represents.

P=hpg

Measurement of Fluid Pressure



In chemical and other industrial processing plants it is often to measure and control
the pressure in vessel or process and/or the liquid level vessel.
The pressure measuring devices are: -

1- Piezometer tube
The piezometer consists a tube open at one end to -
atmosphere, the other end is capable of being inserted into  Figure2.5: The Fiezometer
vessel or pipe of which pressure is to be measured. The
height to which liquid rises up in the vertical tube gives the
pressure head directly.
le. P=hpg
Piezometer is used for measuring moderate pressures._

piezometer. It can be used for measurement of comparatively

high pressures and of both gauge and vacuum pressures.
Following are the various types of manometers: -

|
i
2- Manometers /
The manometer is an improved (modified) form of a <
i
I
i
-
!
a- Simple manometer b- The well type manometer
c- Inclined manometer  d- The inverted manometer

e- The two-liquid manometer

A)Simple manometer

It consists of a transparent U-tube containing the fluid A of density (pa) Whose
pressure is to be measured and an immiscible fluid (B) of higher density (pg). The
limbs are connected to the two points between which the pressure difference (P, - P1)
is required. If P, is greater than Py, the interface between the two liquids in limb €
will be depressed a distance (hm) (say) below that in limb

(2] @ @
P, P>
The pressure at the level a-a must be l
) ) A ¥
the same in each of the limbs and, therefore: »
B Zm

P2+ Zuwpa 9 =P1+ (Zn—hm) pag + s g

:ADIPQ—Plzhm(pB—pA)g 5
If fluid A is a gas, the density pa will

normally be small compared with the density &\n
of the manometer fluid pm so that: \‘ //

Ap=Py—P1=hys g Figure? §: The simple manometer




B)The well-type manometer

In order to avoid the inconvenience of having to read two limbs, and in order to
measure low pressures, where accuracy is of much importance, the well-type
manometer shown in Figure (2.7) can be used. If A, and A; are the cross-sectional
areas of the well and the column and hy, is the increase in the level of the column and
hy the decrease in the level of the well, then:

Po=Pi+(n+hypg or:  Ap=P,—Pi=(n+hw)pg

The quantity of liquid expelled from the well is
equal to the quantity pushed into the column so

that:
Awhy = Achn=hy, = (AdAW) i G
24p=P,—-P1=pghn(1+AJA) P,
If the well is large in comparison to the ccllrl::;.n | | }.-m Ay
ie. (AdAw —>=0 2Ap=P,—Py=pgh, = ih

"
F

'l

Illll

:"'_u_l'q.:u AL

Initial level

Figure 2 7: The well-type manometer

C) The inclined manometer

Shown in Figure (2.8) enables the sensitivity of the manometers described previously

to be increased by measuring the length of the column of liquid. If 0 is the angle of

inclination of the manometer (typically about 10-20°) and L is the movement of the
column of liquid along the limb, then:

hn,=Lsin0

If 6 = 10°, the manometer reading L is increased by about 5.7 times compared with
the reading hy, which would have been obtained from a simple manometer.

Pressure

l
|

Figure 28 : The immclined manometer

3- Mechanical Gauges
Whenever a very high fluid pressure is to be measured, and a very great sensitivity a
mechanical gauge is best suited for these purposes. They are also designed to read

V¢



vacuum pressure. A mechanical gauge is also used for measurement of pressure in
boilers or other pipes, where tube manometer cannot be conveniently used.
There are many types of gauge available in the market. But the principle on which all
these gauge work is almost the same. The followings are some of the important types
of mechanical gauges: -
1- The Bourdon gauge
2- Diaphragm pressure gauge = sewsenuee 5
3- Dead weight pressure gauge

Fmion

Qesr

The Bourdon gauge \ @3
The pressure to be measured is applied to a curved tube, —v
oval in cross-section, and the deflection of the end of

-
o Siot

Pressure scale

4 Quadrent
v geer

Povor

(& Shandard macharerm

sdpustmaent

the tube is communicated through a system of levers to - for catibrovon
a recording needle. This gauge is widely used for steam !

and compressed gases, and frequently forms the conacson

indicating element on flow controllers. The simple form Fig. 2.9

of the gauge is illustrated in Figures (2.9) shows a
Bourdon type gauge with the sensing element in the form of a helix; this instrument
has a very much greater sensitivity and is suitable for very high pressures.

FORCES ON SUBMERGED PLANE SURFACES.

The calculation of the magnitude, direction, and location of the total forces on
surfaces

submerged in a liquid is essential in the design of dams, bulkheads, gates, tanks, etc.
For a submerged, plane, horizontal area the calculation of these force properties is
simple, because the pressure does not vary over the area;

h
p=wh
Y Y /

For non-horizontal planes the problem is complicated by pressure variation. Pressure
in liquids, however, has been shown to vary linearly with depth (eq.1), resulting in the
typical pressure diagrams and resultant forces of Fig. 2.10.



Now consider the general case of a plane submerged area AB, such as that of Fig.
2.11, located in any inclined plane X-X.

Fig 2.11

Let the center of gravity of this area be located as shown, at a depth hy and at a
distance
I from the line of intersection, 0-0, of plane X-X and the liquid surface.
Calculating the force, dF, on the small area, dA,

dF = pdA = whdA
but h = [ sina, substituting this value for h

dF = wlsina dA
And the total force on the area AB will result from the integration of this expression,
giving
A
F = Wsinaj ldA (2)

but fA IdA is recognized as the statical moment of the area AB, about the line 0-0

which is also given by the product of the area, A,
and the perpendicular distance, lg , from 0-0 to the center of gravity of the area. Thus

A
J ldA = 1,A

and substituting this in eq. 2
F = wAl; sina

but hy = [, sin a, giving

F = whyA 3)
indicating that the magnitude of the resultant force on a submerged plane area may be
calculated by multiplying the area, A, by the pressure at its center of gravity, wh,, .
The magnitude of the resultant force having been calculated, its direction and location
must be considered. Its direction, is normal to the plane, and its point of application
may be found if the moment of the force can be calculated and divided by the
magnitude of the force.



Referring again to Fig. 2.11, the moment, dM, of the force, dF, about the line 0-0 is
given by
dM = ldF

in which

dF = wlsinadA
Therefore, by substitution,

dM = wl?sina dA
and integrating to obtain the total moment, M,

A
M = Wsinaf I2dA

in which [“12dA is the moment of inertia | of the area A , about the line 0-0, thus

A
Imozfl%A

M =wsinal,_,
Designating the point of intersection of the resultant force and
the plane as the "center of pressure™ and its distance from 0-0 as
Ip, Ip will be given by

So:

in which
M =wsinal,_,
and
F = wAl; sina
Substituting these values above gives
M wsnal,_., I,_,
PTF  wAlysina ;A
thus locating the resultant force in respect to the line 0-0, and completing
the solution of the general problem.
The above equation may be made more usable by .placing it in terms of the moment
of inertia, lg , about an axis parallel to 0-0 through the center of gravity of the area.
Using the equation for
transferring moment of inertia of an area from one axis to another,
oo = Iy +1,°A
and substituting in the equation for I,
_lgtltA
P Iy A Iy A

l

+

which may be written as

I
_ o
b=t

hp = lpsma

ILLUSTRATIVE PROBLEM

A circular gate 2.4 m in diameter lies in a plane sloping 60 with the horizontal.

If water stands above the center of the gate to a depth of 3 m, calculate the magnitude,
direction, and location of the total force exerted by water on gate.



Direction: normal to gate

Magnitude:

F =
Location

Therefore force passes through a point (c.p.) Fig_ of lustrative problem
located 3.08 m below the free surface



Table 1.1

The centre of gravity () and moment of inertia ([} of some important geometrical figures:

i Va. | Nameof C.G. jrom Areg ! { ahout an axis f abour base
Sigure the hase | passing through
C.C, and parailel
fo the buse
3 3
1 Triangle x= i ﬁ Eﬁ— &
. Fig. a 3 2 36 12
k]
2 Rn:cta]:.g]c ¥ = % il b:"; MT!‘
Fig. |
3 Circle =X =d” ad* I _
Fig, ¢ 2 4 64
I 2 1
4 - Trapezium | x = 2a + & jaxh ].in a_tdab+b | s _
;lFiE-d a+ b o2 Wm(a+b)
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Fig. 2.12 Vertically immersed surface.

Curved surfaces



The total forces on submerged curved areas cannot be calculated by the foregoing
methods. These forces may be readily obtained, however, by calculating the

horizontal and vertical components of the forces as indicated below.
See the curved area, AB, of Fig. 2.13 the vertical component of force on the area AB

: . Fy = Wapcp
and the line of action of this force will
pass through the center of gravity of

ABCD.

The horizontal component of force
may be calculated

by the methods of vertical plane
surfaces.

ion: h, =—9
Its location: h,, = y 4 + hy

And the resultant force, F, may be
obtained by composition of the
horizontal and vertical components

Then the angle of direction of the

is simply the weight of liquid, ABCD, thus

- = - = N
4
g cg. of
c.g of ABCD ABCD
b E "Wipep [ £ ?WABCD
A A
Fy
| 5 -
7 Ze F, ER £ H=Fpy
341' B
F
v AFv=Wacp 4P
/
(a) ° (b
Fig 2.13
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Buoyancy
Whenever a body is immersed wholly or partially in a fluid; it is subjected to an
upward force
which tends to lift (or buoy) it up. This tendency for an immersed body to be lifted up
in the fluid is due to an upward force opposite to action of gravity is known as
buoyancy. The force tending to lift the body under such conditions is known as
buoyant force or force of buoyancy or up thrust. The magnitude of the buoyant force
can be determined by Archimedes principle which states as follows:
"The buoyant force acting on a body immersed in a fluid is equal to the weight of the
fluid displaced by the body, and it acts upward through the centroid of the displaced
volume."

weight of fluid displaced by the body = buoyant force

For floating bodies, the weight of the entire body must be equal to the buoyant force,
which is the weight of the fluid whose volume is equal to the volume of the
submerged portion of the floating body. That is

Total weight of the body immersed in a fluid (W) = weight of fluid displaced(Fg)
(W) = (Fg)
pbody X g X VTotal body — pf X g X Vmeersed part of body
pbody _ Vlmmersed part of body

Pr Vrotal body

Therefore, the submerged volume fraction of a floating
body is equal to the ratio of the average density of the body / Floating
to the density of the fluid. Note that when the density ratio » <ER) Yoy

is equal to or greater than one, the floating body becomes U Fluid
completely submerged.

It follows from these discussions that: a body immersed in Suspended body

a fluid Q ‘”f/ (neutrally buoyant)

(1) Remains at rest at any point in the fluid when its

density is equal to the density of the fluid Sinkin
. : o g

(2) Sinks to the bottom when its density is greater than the ot P>p | body

density of the fluid

(3) Rises to the surface of the fluid and floats when the
density of the body is less than the density of the fluid (see
the Fig.).

The buoyant force is proportional to the density of the fluid, and thus we might think
that the buoyant force exerted by gases such as air is negligible.

For example, the volume of a person is about 0.1 m®, and taking the density of air to
be 1.2 kg/m®, the buoyant force exerted by air on the person is
Fg=p,xgxV= (12 kg/m3)(9.81 m/s?)(0.1m3) = 1.2N
The weight of an 80-kg person is: 80 x 9.81 = 788 N.

Therefore, ignoring the buoyancy in this case results in a simple
error in weight which is negligible.

But the buoyancy effects in gases dominate some important natural
phenomena such as the rise of warm air in a cooler environment and
the rise of hot-air or helium balloons. A helium balloon, for
example, rises as a result of the buoyancy effect until it reaches an
altitude where the density of air (which decreases with altitude)
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equals the density of helium in the balloon ignoring the weight of the balloon’s skin.
Centre of Buoyancy

The point of application of the force of buoyancy on the body is known as the centre
of buoyancy. It is always the centre of gravity of the volume of fluid displaced.

Problem Find the volume of the water displaced and position of centre af buoyarcy for a
wooden black of width 2.5 m and of depth 1.5 m, when it floats hovizontally in water. The density of
wooden block is 650 kg/m” and irs length 6.0 m.

Solution. Given:

Width =25m WATER
Depth =13m SURFACE| -
Length =6.0m == s Jw 45
Volume of the block = 2.5 x 1.5 % 6.0 = 22.50 m* 31 ™ b
Density of wood, p =650 kg,‘m3 fo
Weight of block =p x g x Velume ; 25m l
=650 %981 x22.50N = 143471 N Fig.

For equilibrium the weight of water displaced = Weight of wooden block
= 143471 N

Volume of water displaced
_ Weight of waler displaced 143471
Weight density of water 1000 x 9.81

(. Weight density of water = 1000 x 9.81 N/m™)

= 14.625 m*. Ans.

Position of Centre of Buoyancy
Volume of wooden block in water = Volume of water displaced

or 2.5 x h % 6,0 = 14.625 m", where k is depth of wooden block in water
1= _14.625 ={.975 m
25x6.0

Centre of Buoyancy = @ = (0.4875 m from base. Ans.

Example 1: A body of dimensions 1.5 m x 1m x2 m. weighs 1962 N in water. Find
its weight
in air. What will be its specific gravity?

Example 2: A wooden block of specific gravity 0.7 and having a size of 2m X
0.5m x 0.25m flouting in water. Determine the volume of concrete of specific
weight 25 kN/m?, that may be placed which will immerse the (i) block completely in
water and (ii) block and concrete completely in water.
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CHAPTER THREE
DIMENSIONAL ANALYSI

S

Dimensions and units

A dimension is a measure of a physical quantity
(without numerical values), while a unit is a way to
assign a number to that dimension. For example,
length is a dimension that is measured in units such as
meters (m), feet (ft), centimeters (cm), kilometers
(km), etc. (Fig).

i

(dimention}

Length

-

-~ 32 cm ———=

(unit)

cm

1 2 3

There are seven primary dimensions (also called fundamental or basic dimensions):
mass, length, time, temperature, electric current, amount of light, and amount of

matter.

All nonprimary dimensions can be formed by some combination of the seven
primary dimensions. For example, force has the same dimensions as mass times
acceleration (by Newton’s second law). Thus, in terms of primary dimensions,

Dimensions of force:  {Force} = { Mass

Leng

Time?

th
} = [mL/%}

TABLE 1

Force

Length

Dimensions of surface tension: {o,} = {

-1

Primary dimensions and their associated primary S| and English units
Dimension Symbol” SI Unit English Unit
Mass m ke (kilogram) Ibm (pound-mass)
Length L m (meter) ft (foot)
Timet t s (second) s (second)
Temperatura T K (kelvin) R (rankine)
Electric current I A {ampere) A (ampere)
Amount of light C cd (candela) cd (candela)
Amount of matter N mol (male) mol (mole)
EXAMPLE 1 Primary Dimensions of Surface Tension

. 2
m-L/t } -
L

Dimensional Homogeneity

We’ve all heard the old saying; (you can’t add
apples and oranges) (Fig). This is actually a
simplified expression of a far more global and
fundamental mathematical law for equations, the
law of dimensional homogeneity, stated as

Every additive term in an equation must have the

~.-,:"~._ n w + | ‘ =

You can’t add apples and oranges!

same dimensions.
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EXAMPLE Dimensional Homogeneity
of the Bernoulli Equation

Probably the most well-known (and most misused) equation in fluid mechanics
is the Bernoulli equation (Figbeside), discussed in Chap.4 .. One standard form

of the Bernoulli equation for incompressible irrotational fluid flow is CAUTION!
) - | . o WATCH QUT FOR
Bernoulli equation: P+ EPV +pogz=0C (1) NONHOMOGENEQUS

EQUATIONS

(a) Verify that each additive term in the Bernoulli equation has the same
dimensions. (b) What are the dimensions of the constant C?

SOLUTION We are to verify that the primary dimensions of each additive
term in Eq. 1 are the same, and we are to determine the dimensions of
constant C.

Analysis (a) Each term is written in terms of primary dimensions,

{P} = {Pressure} = Fc:-rce} = <4 Mass Length ! = {m}
Area ™ Time? Length? t°’L

1 Vb — { Mass (Length 21 _ [ Mass X Length®) {m}
2P Volume \ Time Length? X Time? 2L

5 WATCH OUT FOR
{pgz) = { Mass Length Leng[h} _ {M“SS X Length } _ { :“} NOMHOMOGENEOLS
Volume Time? Length® X Time? 2L EQUATIONS

Indeed, all three additive terms have the same dimensions.
(b) From the law of dimensional homogeneity, the constant must have the
same dimensions as the other additive terms in the equation. Thus,

m
Primary dimensions of the Bernoulli constant: {C} = {ﬁ}

Discussion |f the dimensions of any of the terms were different from the
others, it would indicate that an error was made somewhere in the analysis.

Dimensional analysis and similarity

There are three primary purposes of dimensional analysis:
1. To generate nondimensional parameters that help in the design of experiments
(physical and/or numerical) and in the reporting of experimental results
2. To obtain scaling laws so that prototype performance can be predicted from
model performance
3. To (sometimes) predict trends in the relationship between parameters

In many cases in real-life engineering, the equations are either not known or too
difficult to solve; oftentimes experimentation is the only method of obtaining reliable
information.

In most experiments, to save time and money, tests are performed on a geometrically
scaled model, rather than on the full-scale prototype. In such cases, care must be
taken to properly scale the results. We introduce here a powerful technique called
dimensional analysis.
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Before discussing the technique of dimensional analysis, we first explain the principle
of similarity. There are three necessary conditions for complete similarity between a
model and a prototype. The first condition is
e Geometric similarity—the model must be the same shape as the prototype,
but may be scaled by some constant scale factor. The second condition is
e Kinematic similarity, which means that the velocity at any point in the model
flow must be proportional (by a constant scale factor) to the velocity at the
corresponding point in the prototype flow, for kinematic similarity the velocity
at corresponding points must scale in magnitude and must point in the same
relative direction. The third similarity condition is that
e Dynamic similarity: Dynamic similarity is achieved when all forces in the
model flow scale by a constant factor to corresponding forces in the prototype
flow.

(All three similarity conditions must exist for complete similarity to be ensured)

Prototype car

Model car
V,

m

s P @
T

Yo



EXAMPLE Similarity between Model and Prototype Cars

The aerodynamic drag of a new sports car is to be predicted at a speed of
50.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-
fifth scale model of the car to test in a wind tunnel. It is winter and the wind
tunnel is located in an unheated building; the temperature of the wind tunnel
air is only about 5°C. Determine how fast the engineers should run the wind
tunnel in order to achieve similarity between the model and the prototype.

SOLUTION We are to utilize the concept of similarity to determine the
speed of the wind tunnel.

Properties For air at atmospheric pressure and at T = 25°C, p = 1.184 kg/m?
and p = 1.849 x 107° kg/m-s. Similarly, at T = 5°C, p = 1.269 kg/m® and

= 1.754 % 1075 kg/m-s.
PmeI‘m _ P PVPL F

II, = Re =
- . o Hp

=1II, , = Re,
which we solve for the unknown wind tunnel speed for the model
tests, V_,

11l P L
w5 ()
Ep / \Pm/ N\ Ly,
1.754 x 10‘5kgfm-s)(1.184 kgfnﬁ)
1.849 x 10~ 3kg/m-s/\ 1.269 kg/m?
Discussion This speed is quite high (about 100 m/s), and the wind tun-
nel may not be able to run at that speed. Furthermore, the incompressible

approximation may come into question at this high speed (we discuss this in
more detail in next example

(5) = 221 mi/h

= (50.0 miﬂl)(

Suppose, for example, that the engineers in the above example use a water tunnel instead of a
wind tunnel to test their one-fifth scale model. Using the properties of water at room
temperature (20°C is assumed), the water tunnel speed required to achieve similarity is easily
calculated as

=) )E)

" A pp o /N Ly,

1.002 % 10 3ke/ms)\/ 1.184 kg/m’
1.849 x 10 3ke/m-s )(993_0 ke/m?

As can be seen, one advantage of a water tunnel is that the required water tunnel speed is
much lower than that required for a wind tunnel using the same size model.

= (50.0 m[fh)( )(5) = 161 mi/h

The method of repeating variables and the Buckingham pi theorem

We have seen the usefulness and power of dimensional analysis. Now we are ready to
learn how to generate the nondimensional parameters, i.e., the IT’s. There are several
methods that have been developed for this purpose, but the most popular (and
simplest) method is the method of repeating variables, popularized by Edgar
Buckingham (1867-1940).

We can think of this method as a step-by-step procedure for obtaining nondimensional
parameters.
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These steps are explained in figure (a) and in detail as we work through an example,
as the best way to learn is by example and practice.

The Method of Repeating Variables

Step 1: List the parameters in the problem Step 4: Choose j repeating parameters.
and count their total number n.

Step 3: Construct the k IT's, and manipulate
Step 2: List the primary dimensions of each as necessary.
of the n parameters.
Step 6: Write the final functional relationship
Step 3: Set the reduction j as the number and check your algebra.
of pnnmary dimensions. Calculate k&,
the expected number of 1I's, .
k=n-j Figure (a)

Guidelines for choosing repeating parameters in step 4 of the method of repeating variables”

Guideline Comments and Application to Present Problem

1. Never pick the dependent variable. In the present problem we cannot choose z, but we must choose from among
Otherwise, it may appear in all the  the remaining four parameters. Therefore, we must choose two of the following

IT's, which is undesirable. parameters: , w;, Z,;, and g.

2. The chosen repeating parameters In the present problem, any two of the independent parameters would be valid
must not by themselves be able according to this guideline. For illustrative purposes, however, suppose we have
to form a dimensionless group. to pick three instead of two repeating parameters. We could not, for example,

Otherwise, it would be impossible  choose I, wg, and z,, because these can form a II all by themselves (twy/z,).
to generate the rest of the IT's.

3. The chosen repeating parameters Suppose for example that there were three primary dimensions (m, L, and t) and
must represent all the primary two repeating parameters were to be chosen. You could not choose, say, a length
dimensions in the problem. and a time, since primary dimension mass would not be represented in the

dimensions of the repeating parameters. An appropriate choice would be a density
and a time, which together represent all three primary dimensions in the problem.

For a simple first example,
consider a ball falling in a vacuum.
Let us pretend that we do not know
much physics concerning falling
objects. Elevation z of the ball must

F 1
wp = initial vertical speed

£ = gravitational

be a function of time t, initial acceleration in the

vertical speed wyo, initial elevation zg = initial negative z-direction
I elevation

Zo, and gravitational constant ¢ — —

(Fig). The beauty of dimensional

analysis is that the only other thing z =elevation of ball

we need to know is the primary =f{t. wy. 2. 8)

dimensions of each of these | ----t-—------doc -~

quantities. As we go through each 7= 0 (datum plane)

step of the method of repeating
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variables, we explain some of the subtleties of the technique in more detail
using the falling ball as an example.

Step 1
There are five parameters (variables and constants) in this problem; n = 5. They
are listed in functional form, with the dependent variable listed as a function of
the independent parameters:
List of relevant parameters: z = f(t,wq, 2y, 9) n=>5
Step 2
The primary dimensions of each parameter are listed here. We recommend
writing each dimension with exponents since this helps later.
z={L"} t={t'} wo = {L't™1} zo={l'} g
— {th—Z}
Step 3
As a first guess, j is set equal to 2, the number of primary dimensions
represented in the problem (L and t).
Reduction: j=2
If this value of j is correct, the number of IT’s predicted by the Buckingham
Pi theorem is
Number of expected IT’s: k=(n—-j)=((B-2)=3
Step 4
We need to choose two repeating parameters since j = 2. (Several guidelines
about choosing repeating parameters are listed in figure (b).
The wisest choice of two repeating parameters is wp and zo.
Repeating parameters:  wp and z

Step 5
Now we combine these repeating parameters into products with each of the
remaining parameters, one at a time, to create the IT’s. The first IT is always the
dependent P and is formed with the dependent variable z.
Dependent IT: My, = zwi'z) 1
Where a; and b; are constant exponents that need to be determined. We apply
the primary dimensions of step 2 into Eq. 1 and force the IT to be dimensionless
by setting the exponent of each primary dimension to zero:

M, = {LOtO} — {nglzgl — Ll(th—l)a1(L1)b1
We equate the exponents of each primary dimension independently to solve for
exponents a; and by

Time: {t°} = {t %} —a;,=0 a; =0
Length: {L°} = {L'L% L} 5 0=1+a;+b, 2 by=—-1—a, > b,
= -1

Equation 1 becomes: II; = Zi

0
In similar fashion we create the first independent IT (I1;) by combining the
repeating parameters with independent variable t.
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— az b
I, =tw,*z,

Dimensions of II: {IL} = {L%°} = {tw&zl:} = {t(L%t~1H%=LD:}
Equating exponents,

Time: () ={tt"=} 0=1-a a=1
Length: {L% = [L=%}) O0=a,+b, by,=—-a b=-1
tw
HZ = _O
Zo
Finally we create the second independent IT (IT3) by combining the repeating
parameters with g and forcing the IT to be dimensionless

I; = gwg3zé’3
Dimensions of 115 {IL,} = {L%°} = {gwazk] = [LUt~ ALt~ 1)sL%)
Equating exponents,
Time: [P} =[t"%t=™) 0=-2-4a a=-2

Length: {L°} = {LL%L%) O=1+4+a,+b, by=-1—a, by=1

Z
n, = 9%
Wo
Step 6
We are finally ready to write the functional relationship between the
nondimensional parameters.

H1=f(H2,H3)—>ZZ—O=f<% @)

"2
Zy W

(The method of repeating variables cannot predict the exact mathematical form
of the equation)

Example: friction in a pipe

Consider flow of an incompressible

fluid of density p and viscosity u

through a long, horizontal section of p.
round pipe of diameter D. The velocity T e e e
profile is sketched in the Fig.; V is the o
average speed across the pipe cross yd

section, which by conservation of mass T

remains constant down the pipe. For a
very long pipe, the flow eventually becomes hydrodynamically fully
developed, which means that the velocity profile also remains uniform down
the pipe.

Because of frictional forces between the fluid and the pipe wall, there exists a
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shear stress t,, on the inside pipe wall as sketched. The shear stress is also
constant down the pipe in the fully developed region. We assume some
constant average roughness height € along the inside wall of the pipe. Develop
a nondimensional relationship between shear stress t,,and the other parameters
in the problem.




Step 1 There are six variables and constants in this problem; n = 6. They
are listed in functional form, with the dependent variable listed as a
function of the independent variables and constants:

List of relevant parameters: T =fiV.e,.p,p, D) n=26

Step 2 The primary dimensions of each parameter are listed. Mote that
shear stress is a force per unit area, and thus has the same dimensions as
pressure.

T v E p I D
{m'L-"t~?} {Lh-} {L"} {m'L-%) {m'L-"%"") {L'"}
Step 3  As a first guess, fis set equal to 3, the number of primary
dimensions represented in the problem {m, L, and t).

Reduction: j=3

If this value of jis correct, the expected numberof II'sis k=n— j=
6—3=23.

Step4 We choose three repeating parameters since j = 3. Following the
guidelines of Figb , we cannot pick the dependent variable 7. We
cannot choose both £ and D since their dimensions are identical, and it
would not be desirable to have i or £ appear in all the IT's. The best choice
of repeating parameters is thus V, D, and p.

Repeating parainelers: V., D, and p
Step 5 Tha dependent IT is generated:

o, = v, VaDhp — {II;}] = {(m'L~ =LY~ DALY (mIL =35}

from which a, = =2, &, = 0, and ¢, = —1, and thus the dependent II is
M = T
1 p'i-"'z
I, I, = S friction factor = f
pV?

Similarly, the two independent I1's are generated, the details of which are
left for you to do on your own:

II, = pVuD2pr — II, = % = Reynolds number = Re

IO, = eVaDhps — I, = % = Roughness ratio

Step 6 We write the final functional relationship as
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CHAPTER FOUR
FLUID DYNAMIC

Methods of Describing Fluid Motion

The fluid motion is described by two methods. They are (i) Lagrangian Method, and
(ii) Eulerian Method. In the Lagrangian method, a single fluid particle is followed
during its motion and its velocity, acceleration, density, etc., are described. In case of
Eulerian method, the velocity, acceleration, pressure, density etc., are described at a
point in flow field. The Eulerian method is commonly used in fluid mechanics.

Types of Fluid Flow

Fluids may be classified as follows:

1. Steady and unsteady flows

2. Uniform and non-uniform flows

3. One, two and three dimensional flows

4. Rotational and irrotational flows

5. Laminar and turbulent flows

6. Compressible and incompressible flows.

1- Steady and Unsteady Flows
Steady flow: The type of flow in which the fluid characteristics like velocity,
pressure, density, etc. at a point do not change with time is called steady flow.
Example flow of liquid at a constant flow rate and has a velocity equation in the form
u=ax® +bx + ¢ which is independent of time t).
Unsteady flow: It is that type of flow in which the velocity, pressure or density at a
point change with time.
The flow in a pipe whose valve is being opened or closed gradually (velocity equation
is in the form u = ax? + bxt).

2-  Uniform and Non-uniform Flows
Uniform flow: The type of flow, in which the velocity at any given time does not
change with respect to space, is called uniform flow.
Example: flow through a straight pipe of constant diameter
Non-uniform flow: It is that type of flow in which the velocity at any given time
changes with respect to space.
Example: Flow around a uniform diameter pipe-bend or a canal bend.

3- One, Two and Three Dimensional Flows
One dimensional flow: It is that type of flow in which the flow parameter such as
velocity is
function of time and one space co-ordinate only
Example: Flow in a pipe.
Two dimensional flow: The flow in which the velocity is a function of time and two
rectangular space coordinates is called two dimensional flow.
Examples: (i) Flow between parallel plates of infinite extent,

(i) Flow in the main stream of a wide river.

Three dimensional flow: It is that type of flow in which the velocity is a function of
time and three perpendicular directions.
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Examples: Flow in a prismatic open channel in which the width and the water depth
are of the same order of magnitude.

4- Rotational and Irrotational Flows
Rotational flow: A flow is said to be rotational if the fluid particles while moving in
the direction of flow rotate about their mass centers.
Example: Flow near the solid boundaries is rotational.
Irrotational flow: A flow is said to be irrotational if the fluid particles while moving
in the direction of flow do not rotate about their mass centers. Flow outside the
boundary layer is generally considered irrotational.
Example: Flow above a drain hole of a stationary tank or a wash basin.

Note: If the flow is irrotational as well as steady, it is known as Potential flow.

5- Laminar and Turbulent Flows

Laminar and turbulent flows are characterized on the basis of Reynolds number
For Reynolds number (Re) <2300 ... flow in pipes is laminar,

For Reynolds number (Re) > 4000 ... flow in pipes is turbulent

For Re between 2000 and 4000 ... flow in pipes may be laminar or turbulent.

6- Compressible and Incompressible Flows
Compressible flow: It is that type of flow in which the density (p) of the fluid
changes from point to point (or in other words density is not constant for this flow).
Example: Flow of gases through orifices, nozzles, gas turbines, etc.

Incompressible flow: It is that type of flow in which density is constant for the fluid
flow; liquids are generally considered flowing incompressibly.

Continuity Equation

The equation based on the principle of conservation of mass is called continuity
equation. Thus for a fluid flowing through the pipe at all the cross-section, the
quantity of fluid per second is constant.
Consider two cross-sections of a pipe as shown in Fig.
Let u;= Average velocity at cross-section I-I

p1 = Density at section 1-1 @ @

A; = Area of pipe at section |- [ [

,,,,, Lt u,,,“u,uul Lifaitds

DIRECTION | |

And uy, p2, A, are corresponding values at section, 2-2. OF FLOW

Then rate of flow at section |-l = u;p; 4,

Rate of flow at section 2-2 = u,p, A,
According to law of conservation of mass
Rate of flow at section I-| = Rate of flow at section 2-2 Fluid flowing thraugh
Or U p141 = Uppr4; a pipe.
The above equation is applicable to the compressible as
well as incompressible fluids and is called Continuity Equation. If the fluid is
incompressible, then p; = p, and continuity equation reduces to

U144 = u,4,
Q1 = Q;

Where Q is the discharge (the volume of fluid flowing across the section per second)
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Problem The diameters of a pipe at the sections | and 2 are 10 cm and 15 cm respectively. Find
the discharge through the pipe if the velocity of water flowing through the pipe at section | is
S m/s. Determine also the velocity at section 2.

Solution. Given :

@
At scction 1, D;=10ecm=0.1 m ’j)—"/‘,l_—_
A, :% (D,z) =§ (.I)2 = 0.007854 m* —» iD=10cm 1D,=15¢m
V=35 mis.

At section 2, D,=15cm=0.15m

A =§ (.15)* = 0.01767 m*

(/) Discharge through pipe
or 0=A,xV,
= 0.007854 x 5 = 0.03927 m's. Ans.
we have A,V, = A,V,
_ AV _ 0.007854

(if) .. Vo= = X 5.0 = 2.22 m/s. Ans.
A 0.01767

EQUATIONS OF MOTION
According to Newton’s second law of motion, the net force Fx acting on a fluid

element in the direction of x is equal to mass of the fluid element multiplied by the
acceleration ax in the x-direction. Thus mathematically:
F, =mXa,
In the fluid flow, the following forces are present:
1. F,, gravity force.

2. E,, the pressure force.
3. E,, force due to viscosity.
4.  F;, force due to turbulence,
5. E., force due to compressibility.
The net force:
E = (Fg)x + (Fp)x + (Fv)x + (Ft)x + (Fc)x
e |f the force due to compressibility, F, is negligible, the resulting net force
Fx = (F;))x + (Fp)x + (Fv)x + (Ft)x
and equation of motions are called Reynolds’s equations of motion.
e For flow, where (F;) is negligible, the resulting equations of motion are known
as Navier-Stokes Equation: F, = (F;)_+ (F,) + (F)x
o If the flow is assumed to be ideal, viscous force (F,) is zero and equation of
motions are known as Euler’s equation of motion. £, = (F;) + (),
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Velocity and acceleration of fluid flow particle
The velocity of a particle moving along a streamline in a fluid flow (see fig.) may be

expressed by
dl

dt
In which (see Fig) dl is the distance covered by the particle
in time dt.
If the velocity changes, an acceleration, a, exists a‘-”\
One may be think that acceleration is zero in steady flow
since acceleration is the rate of change of velocity with
time, and in steady flow there is no change with time. Well,
a garden hose nozzle tells us that this understanding is not
correct. Even in steady flow and thus constant mass flow
rate, water accelerates through the nozzle (see the Fig).
Steady simply means no change with time at a specified
location, but the value of a quantity may change from one f
location to another. In the_case of a nozzle, the velocity of
water remains constant at a specified point, but it changes
from the inlet to the exit (water accelerates along the  During steady flow. a fluid may not
nozzle)._Mathematically, this can be expressed as follows: i e i imest & beed point. bt
We take the velocity u of a fluid particle to be a function of

land t.
Taking the total differential of u = f([,t)
du =21+ 2% g
Y ot
And dividing both sides by dt:
du B Ju dl 4 ou
dt  adldt ot
_ oudl N ou
C=%rar Tt

In which the first term is called "convective" acceleration, and the second "local"
acceleration. Obviously, local acceleration is a term peculiar to unsteady flow and
vanishes from the above equation when it is applied to steady flow.

In steady flow Z—I: = 0, the acceleration becomes
dudl du
“Trar ‘ol
Where u =% if we are following a fluid particle as it moves along a streamline,
Therefore, acceleration in steady flow is due to the change of velocity with position.

Euler's Equation

By applying Newton's law to the motion of fluid masses,
Leonhard Euler (1750) laid the groundwork for the study
of the dynamics of ideal fluids.

Consider a differentially small section of streamtube
having the dimensions shown in Fig. The forces tending
to accelerate the fluid mass contained therein are:

(1) The component of weight in the direction of motion,
and




(2) The forces on the ends of the element in the direction of motion due to pressure.
Assuming that motion is in an upward direction and that pressure and velocity
increase in this direction, the force dF,, due to the weight of the element is given by

dz
dFy = —pg dl dA cosa = —pg dl dA Pl

The forcedF,, in the direction of motion, due to the pressure on the ends of the
element, is

dp dp
dF, = p dA - (p +—dl> da=—-Laraa

ol ol
The mass dM of fluid being accelerated is
dM = pdldA
And the total acceleration (a) is
_ du N du
R TIANFT:
And for study flow
_ du
a=u dl

Substituting the above values in the Newtonian equation,
dFy + dF, = dM a
there results
dz dp udu
- (pg dl dA E) - (Edl dA) = (pdian) =2
Dividing by p dl dA gives:
dz dp udu

a1t Yoa tar

dp
7+udu+gdz=0 2

the fundamental equation of steady fluid motion. By dividing this equation by g an
alternate form of the equation is obtained

dp udu

— +—+4dz=0 3

w g

Bernoulli's Equation
Euler's equation may be integrated along the streamtube with the following result

f%p + [udu+ [ gdz = Constant

- V'
and if the fluid is a liquid, or a gas flowing with 29
negligible change of density, the integrations may be T
carried out giving J
; + 7+ gz = Constant 2g
or, multiplying by p: .
u? T
p+p7+pgz = Constant 4 13 .
or, dividing by w: ¥
p uZ 2
— + —+z = Constant 5
w Zg )
Horizontal datum plane

1



Now from the Bernoulli equation it becomes evident that the sum of three terms
involving pressure, velocity, and vertical elevation will also be a constant at every
point along the streamtube.

Writing equation 5 between two points on the typical streamtube of Fig. 3.3

uf u’
& + L.{. 1 —& + _2+ZZ
w 29 w 29

The Bernoulli terms in equation 5 thus are seen to have the dimensions of meter, or
"meter of the fluid flowing," since w, the specific weight of the flowing fluid, appears
in one of the terms. The Bernoulli terms in equation 4 will have the dimensions of
pressure (Newton per square meter) and are designated respectively as pressure or
(static pressure), velocity pressure and potential pressure.

Bernoulli's equation gives further aid in the interpretation of streamline pictures,
equations 4 and 5 indicating that, when velocity increases, the sum of pressure and
potential head must decrease. So where velocity is high pressure is low.

Application of Bernoulli's equation
au =./2gh

The above equation may be derived from Bernoulli's Q\
equation by considering steady flow through the reservoir

and orifice of Fig. Taking section 1 at the free reservoir
surface, section 2 in the jet immediately outside of the *
orifice, and the datum plane at the center of the orifice, L
Bernoulli's equation may be written as:

Hornizontal

P1 u% Pz uz datum plane ,}— i
— 4+ —tz ==+ 243z 7
w 29 w 29 %

But, since the tank is very large compared to the orifice,
u, will be very small and when squared usually becomes negligible. The pressure on
the reservoir surface, p,, is atmospheric and may be taken as zero. Atmospheric
pressure surrounds the free jet, and thus the pressure in the jet at section 2 will be

zero. Obviously, z; = h and z, = 0; therefore, the Bernoulli equation becomes:
2

u;
0+0+h=0+—-—+0
2g

U, =,/2gh
b) Another useful special application of the
Bernoulli principle is to the streamtube
which approaches and remains adjacent to
a solid body placed in a flowing fluid (Fig).
Let this streamtube have an infinitesimal
cross section and be represented by the
streamline AB. Because of the interference
of the body, the fluid particles moving on the streamline AB will decelerate as they
approach the body and will temporarily come to rest at the point S, called the
stagnation point; they then will move around the contour of the body with a variation
in velocity approximately as shown on the figure. From Bernoulli's equation 4 the
pressure variation with these velocity changes will be about as shown, and the
pressure at the stagnation point, the stagnation pressure, p, , may be calculated from:

Giving

v




u? u?
ps +p 7 =pot+p 7
po and u, being respectively the pressure and velocity in the undisturbed fluid ahead
of the solid body. In this equation ug = 0; Therefore:
U
Ps = Do t .07

Illustrative problem
A submarine moves through salt water at a depth of 50 m and at a speed of 22 m/s.
Calculate the pressure on the nose of the submarine.
U
Ps = Do t .07

1
Ps = 50 X 9810 + = x 1000 x (22)°

ps = 501500 N/m?

Bernoulli‘'s Equation For Real Fluid

The Bernoulli's equation was derived on the assumption that fluid is inviscid (non-
viscous) and therefore frictionless. But all the real fluids are viscous and hence offer
resistance to flow. Thus there are always some losses in fluid flows and hence in the
application of Bernoulli's equation, these losses have to be taken into consideration.
Thus the Bernoulli's equation for real fluids between points 1 and 2 is given as:

uf u3
B b =22
w 2g w 29

Where h;, is loss of energy between points 1 and 2.

Mechanical energy and efficiency

In fluid systems, we are usually interested in increasing
the pressure, velocity, and/or elevation of a fluid. This is
done by supplying mechanical energy to the fluid by a
pump, a fan, or a compressor (we will refer to all of _ n_—
them as pumps). Or we are interested in the reverse e
process of extracting mechanical energy from a fluid by ~ Y

a turbine and producing mechanical power in the form W —
of a rotating shaft that can drive a generator or any other A | | —
rotary device. The degree of perfection of the conversion ) Y —
process between the mechanical work supplied or YO

extracted and the mechanical energy of the fluid is
expressed by the pump efficiency and turbine efficiency,
defined as

Mechanical energy increase of the fluid

V, =0, V,=12.1 m/s
=4

Py=Py, and P, =Py,

) .2
AEmech, quia _ mV272

= . . Nmech, fan = = ==
MToump Mechanical energy input T Wonanin  Wenanin
AE, . . _ (0.506 kg/s)(12.1 m/s)/2
— mec'h,fluld S0.0 W
Wshaft,ln = 0.741

YA




Where AEmec,;ﬂmd = Emech‘out — Epnecn,in 1S the rate of increase in the mechanical
energy of the fluid, which is equivalent to the useful pumping power W ,mp .
supplied to the fluid, and.

Mechanical energy output Wshart,out

Neurbine = Mechanical energy decrease of the fluid - AE

mech,fluid

AEmech fimd = Emecnin — Emecnoue i the rate of decrease in the mechanical energy
of the fluid, which is equivalent to the mechanical power extracted from the fluid by
the turbine Wy,,pinee- A pump or turbine efficiency of 100 percent indicates perfect
conversion between the shaft work and the mechanical energy of the fluid, and this
value can be approached (but never attained) as the frictional effects are minimized.

The mechanical efficiency should not be confused with the motor efficiency and the
generator efficiency, which are defined as:

i _ Mechanical power output Wsmm out
Motor: Thooter = ™ Electric powerinput W oot in
and

o Electric power output We]em. out
Generator: Meenerator e chanical power input B W

A pump is usually packaged together with its motor, and a turbine with its generator.
Therefore, we are usually interested in the combined or overall efficiency of pump—
motor and turbine—generator combinations (see the fig).

Mourbine — 0.75 ﬂgcﬂcr_u,.,_. = (.97

l ‘“-..'}..'-.'1. out

I Miurtine gen = 1Ju'r:url'i:-c.-ri'gn.'m.'r;a.'::r
= (.75 X 0.97
=073
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INTERNAL FLOW

Fluid flow is classified as external or internal, depending on whether the fluid is
forced to flow over a surface or in a conduit. Internal and external flows exhibit very
different characteristics

Liquid or gas flow through pipes or ducts
is commonly used in heating and cooling
applications and fluid distribution
networks. The fluid in such applications
is usually forced to flow by a fan or
pump through a flow section. We pay
particular attention to friction, which is
directly related to the pressure drop and
head loss during flow through pipes and
ducts. The pressure drop is then used to §
determine  the  pumping  power
requirement. A typical piping system ; SN
involves pipes of different diameters connected to each other by various fittings or
elbows to route the fluid, valves to control the flow rate, and pumps to pressurize the
fluid.

Laminar and Turbulent Flows

Reynolds experiment
The type of flow is determined from the Reynolds number i.e. % . This was

demonstrated by Reynold in 1883. His apparatus is shown in Fig.

DYE CONTAINER

DYE
— VALVE
/
\ 0
GLASS
WATER | ¥568 FILAMENT OF

Fig. Reynold apparatus.

The apparatus consists of:
1. A tank containing water at constant head.
2. A small tank containing some dye.
3. A glass tube having a bell-mouthed entrance at one end and a regulating value
at other ends.



The water from the tank was allowed to flow through the glass tube. The velocity of
flow was varied by the regulating valve. A liquid dye having same specific weight as
water was introduced into the glass tube as shown in Fig.

The following observations were made by Reynold:

e When the velocity of flow was low. The dye filament in the glass tube was in
the form of a straight line. This straight line of dye filament was parallel to the
glass tube, which was the case of laminar flow as shown in Fig. (a).

e With the increase of velocity of flow, the dye-filament was no longer a
straight-line but it became a wavy one as shown in Fig. (b). this shows that
flow is no longer laminar.

e With further increase of velocity of flow, the wavy dye-filament broke-up and
finally diffused in water as shown in Fig. (c). this means that the fluid particles
of the dye at this higher velocity are moving in random fashion, which shows

DYE

(a) Laminar flow / FILAMENT (b) Transition WAVY (c) Turbulent flow

/" FILAMENT

DIFFUSED
 FILAMENT

'/ 1 VM e

i ———— S R -

Fig. Different stages of filament.

the case of turbulent flow. Thus in case of turbulent flow the mixing of dye-
filament and water is intense and flow is irregular, random and disorderly.

Laminar and turbulent flows are characterized on the basis of Reynolds number
For Reynolds number (Re) <2300 ... flow in pipes is laminar,

For Reynolds number (Re) > 4000 ... flow in pipes is turbulent

For Re between 2000 and 4000 ... flow in pipes may be laminar or turbulent.

Reynolds number
Reynolds number is a dimensionless number, defined as:

Re = (Inertia forces/Viscous forces). Or,
R pud
e=—

u
Where Circular tube: @
u = free stream velocity, m/s

d = hydraulic diameter B AmD4)

. - 1
When the Reynolds number is low, i.e. when the flow ™
is laminar, inertia forces are small compared to

viscous forces and the velocity fluctuations are

‘damped out' by the viscosity effects and the layers of |>7““ %" .

fluid flow systematically, parallel to each other. _4a® _
When the Reynolds number is large, i.e. when the " da
flow is turbulent, inertia forces are large compared to

a

the viscous forces and the flow becomes chaotic Bectanpiaridac: 1R

For flow through noncircular pipes, the Reynolds number is b

4 A, h=2a+b)~ a+b

based on the hydraulic diameter D,, defined as (the Fig.) D __4ab_ _ 2ab

Hydraulic diameter: Dy, =

P
Where A, is the cross-sectional area of the pipe and p is its / =

wetted perimeter. Channel: 5

dab

&) "= 2a+b

- ph —




The entrance region

Consider a fluid entering a circular pipe at a uniform velocity. Because of the no-slip
condition, the fluid particles in the layer in contact with the wall of the pipe come to a
complete stop. This layer also causes the fluid particles in the adjacent layers to slow
down gradually as a result of friction. To make up for this velocity reduction, the
velocity of the fluid at the midsection of the pipe has to increase to keep the mass
flow rate through the pipe constant. As a result, a velocity gradient develops along the
pipe.

The region of the flow in which the effects of the viscous shearing forces caused by
fluid viscosity are felt is called the velocity boundary layer or just the boundary layer.
The hypothetical boundary surface divides the flow in a pipe into two regions: the
boundary layer region, in which the viscous effects and the velocity changes are
significant, and the irrotational (core) flow region, in which the frictional effects are
negligible and the_velocity remains essentially constant in the radial direction.

The thickness of this boundary layer increases in the flow direction until the boundary
layer reaches the pipe center and thus fills the entire pipe, as shown in Fig., and the
velocity becomes fully developed.

[rrotational (core) Velocity boundary Developing velocity Fully developed
flow region layer profile velocity profile
Vay g Vave / Vave Vavg Vave /
2 E £ g 2

> / / 1 1

:'HL A [~ L= 15 /
rlF— e e

B = 7] LI LI A
. i L,/ L,/ L,

X
=

<—— Hydrodynamic entrance region -

A
~
L

Hydrodynamically fully developed region

The region from the pipe inlet to the point at which the velocity profile is fully
developed is called the hydrodynamic entrance region, and the length of this region is
called the hydrodynamic entry length.

e Flow in the entrance region is called hydrodynamically developing flow since
this is the region where the velocity profile develops.

e The region beyond the entrance region in which the velocity profile is fully
developed and remains unchanged is called the hydrodynamically fully
developed region.

However, the pipes used in practice are usually several times the length of the
entrance region, and thus the flow through the pipes is often assumed to be fully
developed for the entire length of the pipe. This simplistic approach gives reasonable
results for long pipes but sometimes poor results for short ones.

£y



Laminar Flow

Flow of Viscous Fluid in Circular Pipes-Hagen Poiseuille Law
Hagen-Poiseuille theory is based on the following assumptions:
1- The fluid follows Newton's law of viscosity.
2- There is no slip of fluid particles at the boundary (i.e. the fluid particles
adjacent to the pipe will have zero velocity).
The fig. shows a horizontal circular pipe of radius R, having laminar flow of fluid
through it. Consider a small concentric cylinder (fluid element) of radius r and length

P

P2 T2 rdx
-
el eSS
Direction
of flow L_ _4
dx

Fig. Viscous/laminar flow through a circular pipe.

dx as a free body.
If T :is the shear stress, the shear force F is given by
F = tX 2nr X dx
Let P be the intensity of pressure at left end and the intensity of pressure at the right

( )
ax

Thus the forces acting on the fluid element are:
1- The shear force, T X 2mr X dx on the surface of fluid element.
2- The pressure force, P x wr? on the left end.

3- The pressure force,(P + Z—de) x rr?on the right end.
For steady flow, the net force on the cylinder must be zero.

aP
[PXm"Z—(P+adx)><nr2]—Tx 2nr X dx =0
P
——dxXmri—1tXx 2nrXx dx =0
0x
B anr "
t= ox 2 (1)

e Eqn. (1) shows that flow will occur only if pressure gradient exists in the
direction of flow.

¢y



e The negative sign shows that pressure decreases in the direction of flow.

e Eqgn. (1) indicates that the shear stress Shear stress — Velocity
. . . distribution distribution curve
varies linearly across the section (see the \ {7
next Fig.). Its value is zero at the centre of T
pipe (r = 0) and maximum at the pipe wall O t R
. Mg "L
( =R |
1
e
Fig. Shear stress and velocity distribution across a section.

123



{i} Velocity Distribution. To obtain the velocity distribution across a section, the value of shear

stress T= L % is substituted in equation (1).
y _

But in the relationt=y ﬁ,y is measured from the pipe wall. Hence

y=R-r and dy=-dr

du du
=M
Substituting this value in  ({), we get

—!.ldu——gﬁl or du=—l— /2 [
2u |\ ax

T=H

dr  dx 2
Integrating this above équalion w.r.t. °r', we et

where C is the constant of integration and its value is obtained from the boundary condition that at
r=R,u=10.

=La—pR2+C

4u dx
1 ap x
— | — — R'
4n ox

Substtuting this value of C in equation we get.
1 dp P 1o R?

U= ——tm

41 dx 4 ax

1 0p p2 2
= 2P p2
4u3x[ g

In the above equation, values of Z—z and R are constant, which means the velocity, u
varies with the square of r. The equation is equation of parabola. This shows that the

velocity distribution across the section of a pipe is parabolic. This velocity
distribution is shown in the above Fig.

Ratio of maximum velocity to average velocity
The velocity is maximum, when r = 0 in the equation. Thus maximum velocity, Uy,
IS obtained as
1 0P
Umax - 4# dx
Let the average velocity, u to be

2

Um ax

2

u=
So

¢0o



10P ,

8u dx

I

Drop of Pressure for a given Length (1) of a pipe

From the above cquation we have
(- : N
() - (@ (L
8}1 ax a_t F g —_— —b-iP'E p2| D
Integrating the above cquation w.r.t. x, we get - | 3

_II :’!'p:Lt 8}1;_! dv —"I"tL'— L —»

2 R f—— X ————»]
" Fig.

8 8
—[p—pil= % ¥y —xlor(p —pi) = “};zi (%, — 1]

8}5;‘ L [~ x3-x,=Lfrom Fig.}

“Goiar vl

or {p,-r)= 32;;;”‘ . where p, — p, is the drop of pressure.

s Loss of pressure head = L Bl -
Ps

Py = Pa 32pnl
— = hf= >
Ps peD

Eguation is called Hagen Poiseuille Formula.

e



Mustrative Example

A capillary tube 15 30 mm long and 1 mm bore. The head required to produce a flow rate of
& mm3/s 15 30 mm. The fluid density is 800 kg/m3.

Caleulate the dynamic and kinematic viscosity of the o1l

SOLUTION

Reamranging Poiseuille's equation we get

= LapeD”
32Lu,
2 X 0.0012
AT PR s 85x 107 7m?
4
Q@ 8x107° m
U =——==—"" — 0.01019—
m o4 785x1077 5
_ 0.03x800x9.81x0.001" _ 0.0241 N s/m1 or 24.1cP
32x0.03x0.01018
no 0.0241

200 = 30.11x10%m? /s
p

Pressure Drop and Head Loss

A quantity of interest in the analysis of pipe flow is the pressure drop AP since it is
directly related to the power requirements of the fan or pump to maintain flow.

From (Hagen Poiseuille) equation we have

32uLu
AP=P1_P2= D2 (a)
Note from Eq. (a) that the pressure drop is proportional to & -

the viscosity u of the fluid, and AP would be zero if there
were no friction. Therefore, the drop of pressure from P; to

| AP,
[
P, in this case is due entirely to viscous effects. b — Ve |D
|
I
|

In practice, it is convenient to express the pressure loss for
all types of fully developed internal flows (laminar or
turbulent flows, circular or noncircular pipes, smooth or

L

SRR ER

rough surfaces, horizontal or inclined pipes) as shown in Pressure loss: AP, = f }fiﬂ"ﬁw
(Fig.) . .
L pl_l AP V2

— —_— . AR I_ :]-1'3'

AP =fo= (b) Head loss: hy =pg"=[ 55"

Setting Egs. (a) and (b) equal to each other and solving for f gives the friction factor
for fully developed laminar flow in a circular pipe,

1Y




64 64

=oDu Ro (c¢) for more information see the appendex of ch.4

This equation shows that in laminar flow, the friction factor is a function of the
Reynolds number only and is independent of the roughness of the pipe surface
(assuming, of course, that the roughness is not extreme).

In the analysis of piping systems, pressure losses are commonly expressed in terms of
the equivalent fluid column height, called the head loss h;. Noting from fluid statics
that AP = pgh and thus a pressure difference of AP corresponds to a fluid height of

h, = AP/pg, the pipe head loss is obtained by:
AP, LW

h = = f__
" pg ‘D2

(d)

The head loss h;, represents the additional height that the fluid needs to be raised by a
pump in order to overcome the frictional losses in the pipe. Equations (b) and (d) are
valid for both laminar and turbulent flow in both circular and noncircular pipes, but
Eq. (c) is valid only for fully developed laminar flow in circular pipes.

Once the pressure loss (or head loss) is known, the required pumping power to
overcome the pressure loss is determined from

Wpump, = QAP, = Qpgh, = mgh,,

Where Q is the volume flow rate and m is the mass flow rate.

Turbulent Flow in Pipes

Most flows encountered in engineering practice are turbulent, and thus it is important
to understand how turbulence affects wall shear stress. However, turbulent flow is a
complex mechanism dominated by fluctuations, and despite tremendous amounts of
work done in this area by researchers, turbulent flow still is not fully understood.
Therefore, we must rely on experiments and the empirical or semi-empirical
correlations developed for various situations.

Turbulent flow is characterized by disorderly and rapid fluctuations of swirling
regions of fluid, called eddy, throughout the flow. These fluctuations provide an
additional mechanism for momentum and energy transfer.

In laminar flow, fluid particles flow in an orderly manner along pathlines, and
momentum and energy are transferred across streamlines by molecular diffusion.

In turbulent flow, the swirling eddies transport mass, momentum, and energy to other
regions of flow much more rapidly than molecular diffusion, greatly enhancing mass,
momentum, and heat transfer

Friction Factor Calculation for Turbulent Flow

The moody chart and the Colebrook equation

The friction factor in fully developed turbulent pipe flow depends on the Reynolds
number and the relative roughness /D, which is the ratio of the mean height of
roughness of the pipe to the pipe diameter. The functional form of this dependence
cannot be obtained from a theoretical analysis, and all available results are obtained
from experiments using artificially roughened surfaces.

Most such experiments were conducted by Prandtl’s student J. Nikuradse in 1933,
followed by the works of others. The friction factor was calculated from
measurements of the flow rate and the pressure drop.
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The experimental results are presented in tabular and graphical. A formula that gives an
approximate answer for any surface roughness is that given by Haaland.

)

Moody Dlagram
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We make the following observations from the Moody chart:

e For laminar flow, the friction factor decreases with increasing Reynolds
number, and it is independent of surface roughness.

e The friction factor is a minimum for a smooth pipe (but still not zero because
of the no-slip condition) and increases with roughness.

e For smooth pipes, use the bottom curve on the diagram, (surface roughness= 0).

[ ]

At very large Reynolds numbers the friction factor curves corresponding to
specified relative roughness curves are nearly horizontal, and thus the friction
factors are independent of the Reynolds number. The flow in that region is
called fully rough flow

Types of fluid flow problems

In the design and analysis of piping systems that involve the use of the

Moody chart, we usually encounter three types of problems (the fluid and the
roughness of the pipe are assumed to be specified in all cases) (Fig):
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1. Determining the pressure drop (or head
loss) when the pipe length and diameter are ' .
given for a specified flow rate (or velocity) Find
2. Determining the flow rate when the pipe
length and diameter are given for a specified
pressure drop (or head loss)

3. Determining the pipe diameter when the AF J
pipe length and flow rate are given for a
specified pressure drop (or head loss)

Minor Losses

The fluid in a typical piping system passes through various fittings, valves, bends,
elbows, tees, inlets, exits, expansions, and contractions in addition to the straight
sections of piping. These components interrupt the smooth flow of the fluid and cause
additional losses because of the flow separation and mixing they induce.

- In a system with long pipes, these losses are minor compared to the head loss in the
straight sections (the major losses) and are called minor losses.

- But, in some cases the minor losses may be greater than the major losses. This is the
case, for example, in systems with several turns and valves in a short distance.

Sudden /

expansion

The head loss introduced by a Flow through valves and fittings is very complex, and a
theoretical analysis is generally not posable. Therefore, minor losses are determined
experimentally, usually by the manufacturers of the components.

Minor losses are usually expressed in terms of the loss coefficient K; (also called the
resistance coefficient), defined as following:

1. Exit from a pipe into a tank.
The liquid emerges from the pipe and collides with |
stationary liquid causing it to swirl about before finally \\kO

coming to rest. All the kinetic energy is dissipated by

friction. It follows that all the kinetic head is lost so k = 1.0 il_

ftt
ftt
ftt



2. Entry to a pipe from a tank
The value of k varies from 0.78 to 0.04 depending on the shape
of the inlet. A good rounded inlet has a low value but the case
shown is the worst.

3. Sudden enlargement
This is similar to a pipe discharging into a tank but this time it
does not collide with static fluid but with slower moving fluid in
the large pipe. The resulting loss coefficient is given by the
following expression.

4. Sudden contraction
This is similar to the entry to a pipe from a tank. The best case
gives k = 0 and the worst case is for a sharp corner which gives k

= 0.5.

5. Bends and fittings
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The k value for bends depends upon the radius of the bend and the diameter of the
pipe. The k value for bends and the other cases is on various data sheets. For
fittings, the manufacturer usually gives the k value. Often instead of a k value, the

loss is expressed as an equivalent length of straight pipe that.

Bends and Branches

90° smooth bend: 90° miter bend 90° miter bend

45° threaded elbow:

Flanged: K, = 0.2
Threaded: K, = 1.5

Flanged: K, = 1.0
Threaded: K, = 2.0

L

Flanged: K, = 0.2
Threaded: K, = 0.9

i

V g —

Ui

Flanged: K, = 0.3 (without vanes): K, = 1.1 (with vanes): K, = 0.2 K, =04
Threaded: K, = 0.9
{‘1 45°
V e V e V e Q V i
ﬁ —‘ —‘_\ﬁ\ j
180° return bend: Tee (branch flow): Tea (line flow): Threaded umnion:

K, = 0.08

Vi

Valvas

Globe valve, fully open: K, = 10 Gate valve, fully open: K; = 0.2

Angle valve, fully open: K, = 5 iclosed: K, =0.3
Ball vaive, fully open: K, = 0.05 iclosed: K, =2.1
Swing check valve: K, = 2 3closed: K, =17
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Figures of standard pipe fittings and standard valves

gate vailve

From the above points for the values of loss coefficient K; Minor losses are calculated

as following:

Where h; the additional head loss is in the piping system caused by insertion of the
- - APL - - - -
component, and is defined as h;, = 7 For example, imagine replacing the valve in

the Pipe section with valve:
next
Flg' Pipe section without valve:
. M M M
Yo e ) @
=1 ! 1 o
s (P 'F,:lr‘!ﬂ' -
‘“"f =1'F!| P:;'uh: IPI p:'lplpr
Total Friction Losses
. ENERGY LOSS
The frictional losses from the e,
friction in the straight pipe
(skin  friction), enlargement
losses, contraction losses, and
losses in fittings and valves are Major energy losses Minor energy losses
all incorporated in hL term in Dueto surface skin of the pipe ® Sudden expansion or contraction in pipe
I . ® Bends, valves and fittings
Bernoulli's equation, so that. e An obstruction in the pipe
h u12+Ku12+Ku22+Ku2
L= 0 d2g " %29 29 T2g
Q)’ Q)’ Q) Q\’
@& @ @) @)
hy=f-—"F—+K,——+K—2—+K;
d 2g 2g 2g 2g
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8fL 8K, 8K, 8K, ,
h, = =+ 7+ -+ 2] xQ
nlgd; m?gd; m?gd, m?gd
If all the velocity u, u;, and u, are the same, then this equation becomes, for this
special case;

[ u?
hy = [fE+Ke+KC+Kf]E

EXTERNAL FLOW
Parallel flow over flat plate

Velocity boundary layer

Let us first study the development of boundary layer for a flow over a flat plate. Flow
over a flat plate is important from a practical point of view, since flow over turbine
blades and aerofoil sections of air plane wings can be approximated as flow over a flat
plate. See Fig.

Consider a thin, flat plate. The leading edge and the trailing edge of the plate are
shown in the Fig. Let a fluid approach the flat plate at a free stream velocity of U. The
fluid layer immediately in contact with the plate surface adheres to the surface and
remains stationary, and in fluid mechanics, this phenomenon is known as 'no slip
condition. Then, the fluid layer next to this stationary layer has its velocity retarded
because of the viscosity effects i.e. due to the frictional force or 'drag’ exerted between
the stationary and the moving layers. This effect continues with subsequent layers up
to some distance in the y-direction till the velocity equals the free stream velocity U.
This region of fluid layer in which the viscosity effects are predominant is known as
the 'velocity (or hydrodynamic) boundary layer', or simply the 'boundary layer'.

Yy
4
Lvif-,> x
Transition region
/
|
| Laminar region Turbulent region
Fluid flow _ Velocity profile
; U __ o
! | =T e Buffer |
— ' ‘ / , rla
< v _L N > ' v i u' er layet
L , T NV e L ~ Laminar sublayer
| | | _—~ v » = Y/
Pa - —icmas o —Eeoreee]
Leading edge Fiat blate Trailing edge
Development of boundary loyer over o flat plate

Note the following points in connection with the boundary layer:
1. The boundary layer divides the flow field into two regions: one, 'the boundary
layer region' where the viscosity effects are predominant and the velocity
gradients are very steep, and, second, inviscid region' where the frictional
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effects are negligible and the velocity remains essentially constant at the free
stream value.
Since the fluid layers in the boundary layer travel at different velocities, the
faster layer exerts a drag force ( or frictional force) on the slower layer below
it; the drag force per unit area is known as shear stress (t)'. Shear stress is
proportional to the velocity gradient at the surface. This is the reason why in
fluid mechanics, the velocity profile has to be found out to determine the
frictional force exerted by a fluid on the surface. Shear stress is given by:
du
T = . (— N/m?
s=H ( dy)y:@ /
Where u is 'dynamic viscosity' of the fluid; its unit is kg/(ms). Viscosity is a
measure of resistance to flow.
Use of the above Eq. to determine the surface shear stress is not very
convenient, since it requires a mathematical expression for the velocity
profile; so, in practice, surface shear stress is determined in terms of the free
stream velocity from the following relation:
2
Ts = Crq % N/m?
where C; is a 'friction coefficient' or 'drag coefficient', p is the density of the
fluid. Cf, is determined experimentally in most cases. Then the drag force
over the entire plate surface is determined from:
pU?
FD = Cfa.A.T N
where A = surface area, m>.

Starting from the leading edge of the plate, for some distance along the length
of the plate, the flow in the boundary layer is 'laminar' i.e. the layers of fluid
are parallel to each other and the flow proceeds in a systematic, orderly
manner. However, after some distance, disturbances appear in the flow and
beyond this ‘transition region’, flow becomes completely chaotic and there is
complete mixing of ‘chunks' of fluid moving in a random manner i.e. the flow
becomes 'turbulent'.

. Transition from laminar to turbulent flow depends primarily on the free stream
velocity, fluid properties, surface temperature and surface roughness, and is
characterized by 'Reynolds number'. Reynolds number is a dimensionless
number, defined as:

U.x
Re = —
v

Where

U = free stream velocity, m/s

X = characteristic length i.e. for a flat plate it is the length along the plate in the
flow direction, from the leading edge, and

v = kinematic viscosity of fluid = /p , m?/s, where p is the density of fluid.
For a flat plate, in general, for practical purposes, the ‘critical Reynolds
number, at which the flow changes from laminar to turbulent is taken as
(5 * 10°). It should be understood clearly that this is not a fixed value but
depends on many parameters including the surface roughness.

. Turbulent region of boundary layer is preceded by transition region as shown
in Fig.
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7. Turbulent boundary layer itself is made of three layers: a very thin layer called
laminar sub-layer’, then, a "buffer layer' and, finally, the ‘turbulent layer’,
8. Thickness of the boundary layer, &, increases along the flow direction; & is
related to the Reynolds number as follows: in the laminar flow region:
5.x

' (Rex)®3

1.33
Cfaverage = W

and for turbulent flow region:
0.376.x

turb = W
0.074
Cfaverage = W

where Re, is the Reynolds number at position x from the leading edge.
DISCHARGE FROM A TANK THROUGH AN ORIFICE
Co-efficient of Discharge (Cd)
It is defined as the ratio of the actual discharge from an orifice to the theoretical
discharge from the orifice. It is denoted by Cd. If Q is actual discharge and Qy, is the
theoretical discharge then mathematically Cd, is given as

Q Actual velocity x Actual area
Cd=—= . . .
Q:n  Theoretical velocity x Theoretical area

The value of Cd, varies from 0.61 to 0.65. For general purpose the value of Cd is
taken as 0.62.
Experimental determination of co-efficient of discharge (Cd).
The water is allowed to flow through an orifice fitted to a tank under a constant head.
H as shown in Fig. The water is collected in a measuring tank for a known time, t.
The height Of water in the measuring tank is noted down. Then actual discharge
through orifice:

Area of measuring tank X Height of water in measuring tank

B Time(t)

And
theoretical discharge = area of orifice X /2gH

Q S
Cd = —— e
% .[20H SUPPLY
a g WATER \'-

H
c
1 [
- — %
P
o
c !
MEASURING | === |
TANK —>

Time Of Emptying A Tank Through An Orifice At Its Bottom
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Consider a tank containing some liquid up to a height of H; Let an orifice is fitted at
the bottom of the tank. It is required to find the time for the liquid surface to fall from
the height H; to a height H,.
Let A = Area of the tank
a = Area of the orifice
H, = Initial height of the liquid
H, = Final height of the liquid ¥ ink
T= Time in seconds for the liquid to fall from H, to H, T? T EIiIiiil
Let at any lime, the height of liquid from orifice is h and h ﬁ i
let the liquid surface fall by a small height dh in time dT. l g

7
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= s i o= =2 a2l

Then
Volume of liquid leaving the tank in time, = A X dh

Also the theoretical velocity through orifice, u = \/2gh

oz | L.

\ORIFIGE

.§..,

Discharge through orifice/sec,

dQ = C,; x Area of orifice X Theoretical velocity = C,. a . /2gh
Discharge through orifice in time interval

=Cy.a.42gh .dT
As the volume of liquid leaving the tank is equal to the volume of liquid flowing through orifice in
time d7T, we have

A(-dh)y=Cy.a. f2gh .dT
— ve sign is inserted because with the increase of time, head on orifice decreases.
—Adh —A(RY"?
C,.a.\2gh - C, .a.m
By integrating the above equation between the limits I, and f1,, the total time, T is obtained as

: — AR dh - H
A L w2 dn

)
L= e atmc i

~Adh=C,.a.J2gh .dT ordT = dh

Tl fa
-=+
N .
C‘d .0.1,‘23 ,_l_l_l Cnf oa-\lzg l_
2 2

H,

-z j.A _ [ - 7T - M([;ﬁ_:/;’_:_z]

For emptying the tank completely, H, = 0 and hence

o 24T,
“Calts
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VORTEX FLOW
Vortex flow is defined as the flow of a fluid along a curved path or the flow of a
rotating mass of fluid is known a 'Vortex Flow". The vortex flow is of two types
namely :
1. Forced vortex flow.
2. Free vortex flow.

e Forced Vortex Flow. Forced vortex flow is defined as that type of vortex
flow, in which some external torque is required to rotate the fluid mass. The
fluid mass in this type of flow, rotates at constant angular velocity, w. The
tangential velocity of any fluid particle is given by

V=wXT (D

CENTRAL AXIS

.

e e LIQUID

VERTICAL-"Eeeean e
CYLINDER |[———+——

e e . ————

(a) CYLINDER IS STATIONARY (b) CYLINDER IS ROTATING
Fig. Forced vortex flow.

Hence angular velocity w is given by

v
w = — = constant.
r

Examples of forced vortex are:
1. A vertical cylinder containing liquid which is rotated about its central axis
with a constant angular velocity to. As shown in the Fig.
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2. Flow of liquid inside the impeller of a centrifugal pump.

e Free Vortex Flow. When no external torque is required to rotate the fluid
mass, that
type of flow is called free vortex flow.

Example for the free vortex flow is the flow of liquid through a hole provided at the
bottom of a container.

Equation of Motion for Vortex Flow

Consider a fluid element ABCD (shown shaded in the Fig). rotating at a uniform
velocity in a horizontal plane about an axis perpendicular to the plane of paper and
passing through 0.

Let

r= Radius of the element from 0.

A8 = Angle subtended by the element at 0.

dr = Radial thickness of the element.

dA = Area of cross-section of element.

The forces acting on the element are:
1. Pressure force, P dA, on the face AB.

2. Pressure force, (P dA + %P dA dr) on

the face CD. de‘
2 /

3. Centrifugal force, % acting in the

direction away from the centre, 0. 5
Now, the mass of the element = density x Volume / r /-\
p dAdr
2
So the centrifugal force = p dA dr%
Equating the forces in the radial direction, we get

0 v?
PdA—(Pda+—PdAdr)+pdddr—=0

9 b dadr = pdadr
or r=p rr
oP 2

3 =P (a)

. dap . . . . . . dpP .
The expression 5 1S called pressure gradient in the radial direction. As 5 1S

positive, hence pressure increases with the increase of radius r.

But the pressure varies with the vertical plane which given by the hydrostatic law:
dp
3, = P9 (b)
The pressure, p varies with respect to r and z or p is a function of r and z and hence
total derivative of p is
ap=Lar + Py
5 or 4 0z z
Substituting the values of a—f from equation (a) and a—z from equation (b), we get
2
v
dp =p7dr—pgdz (2)
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Eq. (2) gives the variation of pressure of a rotating fluid in any plane

Equation for forced vortex flow

For the forced vortex flow, from equation (1).we have
vV =wXr

Where w = Angular velocity = Constant.

Substituting the value of v in equation (2), we get

dP =p " dr — pgdz

Consider two points 1 and 2 in the fluid having forced vortex flow as shown
in the Fig.
Integrating the above equation for points 1 and 2, we get

2 2 2
de=j pwzrdr—j pgdz
1 1 1
_pw?

Pz—P1—T[rzz_r12]—Pg[Zz—Z1]

i
pP,—P = E[Wzrzz - W27”12] —pglz; — z4]

p
P, — P =E[v22_v12]_,09[22—21] as | v, = wr, and v, = wry|

If the points 1 and 2 lie on the free surface of the liquid, then P, = P, and hence
above equation becomes:

[Uzz - U12] —pglz; — 7]

p
pglz; — z1] = E[vzz - 1712]

[z, —z1] = 5[”% - 1712]

Let point 1 lies on the axis of rotation, then v; = wr; = w X 0 = 0. The above
equation becomes as:

_ 2
[z, —z1] = 29
Letz, —z, =7
So the Eq. becomes:
- vi  wirg 3
=29 29 (3)

Thus Z varies with the square of r. Hence equation (3) is an equation of parabola. This
means the free surface of the liquid is a parabolic.
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Problem Prove that in case of forced vortex, the rise of liquid level at the ends is equal 1o
the fall of liquid level at the axis of rotation.

Solution. Let R = radius of the cylinder.
0-0 = Initial level of liquid in cylinder when the cylinder is not rotating.
-~ Initial height of liquid =(h+ x)
. Volume of liquid in cylinder = nR* x Height of liquid
= R> % (h + x) (i)

Let the cylinder is rotated at constant angular velocity ®. The liquid will rise at the ends and will fall

at the centre.
Let v = Rise of liquid at the ends from O-0
x = Fall of liquid at the centre from 0-0.
Then volume of liquid
= [Volume of cylinder upto level B-B]
— [Volume of paraboloid]
[rR* x Height of liquid upto level B-B]

R
- [KT X Height of paraholnid]

X 2 *— R =i
=mR X (h+x+y) - X (x+y) “AXIS OF
ROTATION
) ) R’ Fig
=TR X h+ TR (x+y) - X(x+y)
=R x h +E§— (x+y) ..(ii)

Equating (i) and (if), we get

TR (h + x) = TR> X h +n2£ (x +y)

or TR’h + TRx = ~R* X h + R X +£ ¥
, mR? R’ R’ R’
or TR x - X=——y Oof —X=——Yy 0r x=y
2 2 2 2

or Fall of liquid at centre = Rise of liquid at the ends.

Problem An open circular tank of 20 cm diameter and 100 cm long contains water uplto a
height of 60 em. The tank is rotated about its vertical axis ar 300 r.p.m., find the depth of parabola
formed at the free surface of walter.

Solution. Given :

Diameter of cylinder =20 cm
Radius, R= 20 =10 cm
Height of liquid, H =60 cm
Speed, N =300 r.p.m.
2 2
Angular velocity, W = 2N _ZXEX300 _ 31.41 rad/sec.
60 60
Let the depth of parabola =7
Z= ﬁ where ry = R
2g B
- ok _ (14D x(10) = 50.28 cm. Ans.
2g 2 %981




Closed Cylindrical Vessels
If a cylindrical vessel is closed at the top, which contains some liquid, the shape of
parabolic formed due to rotation of the vessel will be as shown in the Fig. for different
speed of rotations.
The Fig.(a) shows the initial stage of the cylinder, when it is not rotated. Fig. (b)
shows the
shape of the parabolic formed when the speed of rotation is w. If the speed is
increased further say w,, the shape of paraboloid formed will be as shown in Fig. (c).
In this case the radius of the parabola at the top of the vessel is unknown. Also the
height of the parabolic formed corresponding to angular speed w, is unknown. Thus
to solve the two unknown, we should have two equations. One equation is
wirf

=
The second equation is obtained from the fact that for closed vessel, volume of air
before rotation is equal to the volume of air after rotation.
Volume of air before rotation = Volume of closed vessel - Volume of liquid in vessel

2
Volume of air after rotation = Volume of parabolic formed = %Z

(')1 (')2

| ) )
| A | 2
——}— A A B A
— || ==
s ke —t e, e
——t— iy ir I ooy
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Problem A vessel, cvlindrical in shape and closed at the top and bottom, contains water upto
a height of 80 cm. The diameter of the vessel is 20 cm and length of vessel is 120 ¢m. The vessel is
rotated at a speed of 400 r.p.m. about its vertical axis. Find the height of paraboloid formed.

Solution. Given :

[nitial height of water = 80 cm _
Diameter of vessel = 20 cm T
.~ Radius, R=10cm

Length of vessel = 120 cm z
Speed, N =400 r.p.m. l

o= 2N _2mxX400 _ ) g8 radss
60
When the vessel is rotated, let Z

= Height of paraboloid formed
r = Radius of paraboloid at the top of the vessel
This is the case of closed vessel.
Volume of air before rotation = Volume of air after rotation

or EDEXLAEDEXRI}=R‘:‘2XE
4 4 2

where Z = Height of paraboloid, r = Radius of parabola.

or T px120- F pPx80=mtx L
4 4 2

or T D’ x(120-80)= E D x40=mix 2
4 4 2
or ;xlﬂzx4ﬂ=40ﬁ0xn=nrzx%
, 4
2z = H000XTX2_ gha0 (i)
T
202 S 22
Using relation 7= s we get £ = lis v = dla Xr =0.894
2g 2 x 981
- Z
0.894
Substituting this value of r*in (i}, we pet
_Z x Z = 8000
0.894

7% = 8000 x 0.894 = 7152
Z = +/7152 = 84.56 cm. Ans.

Equation for free vortex flow
In this case of flow Bernoulli’s equation is applicable.
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APPENDIX

Friction Coefficient for Laminar Flow

The friction coefficient is a convenient idea that can be used to calculate the pressure drop in a pipe. It
is defined as follows.

_ Wall Shear Stress
" Dynamic Pressure

e Dynamic pressure

Consider a fluid flowing with mean velocity um. If the kinetic energy of the fluid is converted
into flow or fluid energy, the pressure would increase. The pressure rise due to this conversion
is called the dynamic pressure.
p = Y%pu?
e Wall shear stress
The wall shear stress is the shear stress in the layer of fluid next to the wall of the pipe.

L
pressurz D pressure
A p+ Ap—+ “«~— P
. gradient [*—
! —> at wall "
The shear stress in the layer next to the wall is wall T = “%
The shear force resisting flow is F; = taL.LD
The resulting pressure drop produces a force of
nD?
F,=[-P + (P + AP)] x
Ap nD?
E, = P
4
Equating forces(F;, F,) gives
D Ap mD?
™ = 4
_4dpD
Y

_ Wall Shear Stress DAp

= g = —
Dynamic Pressure 4L %

Where Cf is the Fanning friction coefficient, named after the American engineer John Fanning (1837—
1911), which is defined as Cf = f/4

Where f is called the Darcy—friction factor, named after the Frenchman Henry Darcy (1803-1858)
So

DAp
f=—=
L PY

2

L pu?
Ap = f=——
Pr=f5>
32ulLu
DZ

From Poiseuille's equation AP =
L pu? 32ulLu
D2 D?
64u 64
~ pui’D _Re
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CHAPTERS
FLOW RATE AND VELOCITY MEASUREMENT

A major application area of fluid mechanics is the determination of the flow rate of
fluids, and numerous devices have been developed over the years for the purpose of
flow metering. Flowmeters range widely in their level of size, cost, accuracy,
versatility, capacity, pressure drop, and the operating principle. We give an overview
of the meters commonly used to measure the flow rate of liquids and gases flowing
through pipes or ducts. We limit our consideration to incompressible flow.

e Some flowmeters measure the flow rate directly by discharging and recharging
a measuring chamber of known volume continuously and keeping track of the
number of discharges per unit time. But most flowmeters measure the flow
rate indirectly they measure the average velocity u or a quantity that is related
to average velocity such as pressure, and determine the volume flow rate Q
from, Q = u x A, Where Ac is the cross-sectional area of flow
Therefore, measuring the flow rate is usually done by measuring flow velocity,
and many flowmeters are simply velocimeters used for the purpose of
metering flow.

e The velocity in a pipe varies from zero at the wall to a maximum at the center,
and it is important to keep this in mind when taking velocity measurements.
For laminar flow, for example, the average velocity is half the centerline
velocity. But this is not the case in turbulent flow, and it may be necessary to
take the average or an integral of several local velocity measurements to
determine the average velocity.

The flow rate of water through a garden hose, for example,
can be measured simply by collecting the water in a bucket
of known volume and dividing the amount collected by the
collection time (Fig).

A crude way of estimating the flow velocity of a river is to
drop a float on the river and measure the drift time between
two specified locations.

In this chapter we discuss devices that are commonly used
to measure velocity and flow rate.

Pitot-tube

It is a device used for measuring the velocity at any point in a pipe or a channel. It is
based on the principle that if the velocity of flow at a point becomes zero, the pressure
there is increased due to the conversion of the Kinetic energy into pressure energy.
The pitot-tube consists of both a stagnation pressure tap and several circumferential
static pressure taps and it measures both stagnation and static pressures (Fig)

¢
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Let:

i i : Pitot-tube
p, = intensity of pressure at point (1)
u, = velocity of flow at (1) which is zero Flow ,
p, = pressure at point (2) =t /\ , \\
u, = velocity at point (2) o St,i{i ! N

Applying Bernoulli's equation at points (1) and pressure, P,  pressure, P,
(2), we get

u? u?
Py s =22, =
pPg 2g pY 29 Wind tunnel wall

But z,= z, as points (1) and (2) are on the same
line and u; = 0.

Z—; = pressure head at (1) = h,

Flexible

Z—;: pressure head at (2) = h, tubing

Substituting these values, we get
2

Uu;
h1= h2+5

u, =./2gAh

This is theoretical velocity. Actual velocity is

given by
(U2)act = Cay2gAh
Where C, is coefficient of pitot-tube

e |tis used to measure velocity in both
liquids and gases.

Obstruction Flowmeters: Orifice, Venturi, and Nozzle Meters
Consider incompressible steady flow of a fluid in a horizontal pipe of diameter D that
is constricted to a flow area of diameter d, as shown in Fig.
The mass balance and the Bernoulli equations between a location before the
constriction (point 1) and the location where constriction occurs (point 2) are written
as
Mass balance:Q = A;u; = A,u, -
uy = (A42/A)u; = (d/D)* u, \'
u? 2

Bernoulli equation (z; = z,): 22 + = =22 4 =2 —

i pg 20 pg 20 —-® 4 O D
Combining the above Egs. and solving for velocity u,

gives _—l
<P1 —p, Ui > —_—

2
= (PP (@t )

2 (2(P1p— p2) (gt u2)2>

|2, - py)
2= b -p%

10
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Where g = d/D is the diameter ratio. Once u, is known, the flow rate can be
determined from u,

Q= Ayu, = (nd2/4)u2.

Noting that the pressure drop between two points along the flow is measured easily by
a differential pressure manometer, it appears that a simple flow rate measurement
device can be built by obstructing the flow. Flowmeters based on this principle are
called obstruction flowmeters and are widely used to measure flow rates of gases
and liquids.

The velocity in Eg. above is obtained by assuming no loss, and thus it is the
maximum velocity that can occur at the constriction site. In reality, some
pressure losses due to frictional effects are inevitable, and thus the actual
velocity is less. Also, the fluid stream continues to contract past the
obstruction, and the vena contracta area (see the fig below) is less than the
flow area of the obstruction. Both losses can be accounted for by incorporating
a correction factor called the discharge coefficient Cd whose value (which is
less than 1) is determined experimentally. Then the flow rate for obstruction
flowmeters is expressed as

2(P1—Pp)

: 0 = A % Cd %
Obstruction flowmeters: Q = 4, x Cd p(1-p%)

Where A, the cross-sectional area of the throat or orifice

The value of Cd depends on both 8 and the Reynolds number. Charts and
correlations for Cd are available for various types of obstruction meters.
Numerous types of obstruction meters are available; those most widely used
are orifice meters, flow nozzles, and Venturi meters (Fig, next page).

] i 3.1 g 9171,825
Orifice meters:  C, = 0.5959 + 0.03128~ — 0.1845" + ROT
6.538%
Nozzle meters: C, = 09975 — o

The Reynolds number depends on the flow velocity. Therefore, the solution is
iterative in nature therefore the value of Cd can be taken to be 0.96 for flow
nozzles and 0.61 for orifices.

Owing to its streamlined design, the discharge coefficients of Venturi meters
are very high, ranging between 0.95 and 0.99 in the absence of specific data,
we can take Cd = 0.98 for Venturi meters.

Orifice Plate
1 Vena Contracta

"
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(a) Orifice meter l u h ' (c) Venturi meter

| , i ”I-I i |
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(b) Flow nozzle

a. The orifice meter has the simplest design and it occupies minimal space as it
consists of a plate with a hole in the middle, but the sudden change in the flow
area in orifice meters causes considerable swirl and thus significant head loss
or permanent pressure loss.

b. In nozzle meters, the plate is replaced by a nozzle, and thus the flow in the
nozzle is streamlined. As a result, the vena contracta is practically eliminated
and the head loss is smaller. However, flow nozzle meters are more expensive
than orifice meters.

c. The Venturi meter, is the most accurate flowmeter in this group, but it is also
the most expensive. Its gradual contraction and expansion prevent flow
separation and swirling, and it suffers only frictional losses on the inner wall
surfaces. Venturi meters cause very low head losses, and thus, they should be
preferred for applications that cannot allow large pressure drops.

Venturimeter

A Venturimeter is a device used for measuring the rate of a flow of a fluid flowing
through a pipe. It consists of three parts:

(i) A short converging part, (ii) Throat, and (iii) Diverging part. It is based on the
Principle of Bernoulli's equation.

Consider a Venturimeter fitted in a horizontal pipe through which a fluid is flowing
(say water), as shown in the fig.

Let

d; = diameter at inlet or at section (1)

p1 = pressure at section (1)

u; = velocity of fluid at section (1)

a,= area at section (1) = %d%

And dy, P2, uy and a, are corresponding values at
section (2). Applying Bernoulli's equation at
sections (1) and (2), we get Fig. Venturimeter.

As the pipe is horizontal, z; = z,
2
PP Y

pg 29 pg 29
Or

2 2
p1—p2 Uz U

pg 29 2g
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But % is the difference of pressure heads at sections 1 and 2 and it is equal to Ah
or

b1 — P2 — AR
- - - - - pg
Substituting this in the above equation, we get
Ah = ———
29 29 (a)
Now applying continuity equation at sections 1 and 2
a,u
a1u1 = azuz or ul == (21 2
1
Substituting this value of u; in equation (a)
(%)
u? aq u? a3l u3 [a? —a3
Ah:———:— 1__2 e —— 5
29 29 29 aif 29| a
a
2 =2gAh
T
2
aj a;
u, = |[2gAh = \V2gAh
: \/ ai— a3 [aZ - aZ
Q = axuy

aa
- - - al - az - - = -
The above Equation gives the discharge under ideal conditions and is called,
theoretical discharge. Actual discharge will be less than theoretical discharge.

a;a;
Qact = Cd X\/ﬁ X \lngh
1 2

Where C, = Co-efficient of venturimeter

Value of (Ah) given by differential U-tube manometer
Let the differential manometer contains a liquid which is heavier than the liquid
flowing through the pipe. Let
Sy, = Sp. gravity of the heavier liquid
S, = Sp. gravity of the liquid flowing through pipe
x = Difference of the heavier liquid column in U-tube
Then
Ah = (S—h - 1)
=X SO

Variable-Area Flowmeters (Rotameters)

A simple, reliable, inexpensive, and easy-to-install flowmeter with reasonably low
pressure drop and no electrical connections that gives a direct reading of flow rate for
a wide range of liquids and gases is the variable-area flowmeter, also called a
rotameter or floatmeter. A variable-area flowmeter consists of a vertical tapered
conical transparent tube made of glass or plastic with a float inside that is free to
move, as shown in Fig.

We know from experience that high winds knock down trees, break power lines, and
blow away hats or umbrellas. This is because the drag force increases with flow
velocity. The weight and the buoyancy force acting on the float are constant, but the

TA



drag force changes with flow velocity. Also, the velocity along the
tapered tube decreases in the flow direction because of the increase
in the cross-sectional area. There is a certain velocity that generates
enough drag to balance the float weight and the buoyancy force, and
the location at which this velocity occurs around the float is the
location where the float settles. The degree of tapering of the tube can
be made such that the vertical rise changes linearly with flow rate, and

thus the tube can be calibrated linearly for flow rates.

Design equation

Q = Cd' Aann[lgyﬂ{pﬂ - p'f}f‘{r'pfjwt

where,
¢ = Volume flow rate,
C, = Co-efficient of discharge,
A = Annular area between float and tube,

Arie.

Vﬂ = Volume of float,

Py = Density of float material,
Py Density of fluid, and
A = Maximum cross-sectional area of the fluid.

Paddlewheel flowmeter
e To measure liquid flow
e Working
A sensor detects the passage of each of the
paddlewheel blades and transmits a signal.
A microprocessor then converts this
rotational speed information to flow rate.

14

Retainer cap

Paddlewheel

SCNSOr

Sensor
housing\

Truseal
locknut

Flow ——— —-

LS

FIGURE Paddlewheel flowmeter




Example 1: A pilot-static tube is used to measure the velocity of water in a pipe. The
stagnation pressure head is 6 m and static pressure head is 5 m. calculate the velocity
of flow assuming the coefficient of tube equal to 0.98.

Example 2: A Pitot tube is placed at a center of a 30 cm 1.D. pipe line has one orifice
pointing upstream and other perpendicular to it. The mean velocity in the pipe is 0.84
of the center velocity. Find the discharge through the pipe if the fluid flow through the
pipe is water and the pressure difference between orifices is 6 cm H,O. Take Cp =
0.98.

Example 3: The flow rate of methanol at 20°C (p = IRE
788.4 kg/m3 and u = 5.857 x 10~* kg/m - s) through JLL
a 4-cm-diameter pipe is to be measured with a 3-cm

diameter orifice meter equipped with a mercury ) . ©
manometer across the orifice plate, as shown in Fig. If —H % H]
W

the differential height of the manometer is 11 cm,
- I/ -

determine the flow rate of methanol through the pipe
and the average flow velocity. Take the discharge
coefficient of the orifice meter Cd = 0.61. ‘

11 cm

Mercury |

manometer | L)
S

Example 4: An oil of sp. gr. 0.8 is flowing through a venturimeter having inlet
diameter 20 cm and throat diameter 10 cm. The oil-mercury differential manometer
shows a reading of 25 cm. Calculate the discharge of oil through the horizontal
venturimeter. Take C4 = 0.98.

Example 5: A horizontal venturimeter with inlet diameter 20 cm and throat diameter
10 cm is used to measure the flow of oil of sp. gr. 0.8. The discharge of oil through
venturimeter is 60 Liters/s. Find the reading of the oil-mercury differential
manometer. Take Cq = 0.98.



CHAPTER SIX
PUMPS

Introduction
Pumps are devices for supplying energy or head to a flowing liquid in order to
overcome head losses due to friction or to raise liquid to a higher level. The energy
required by the pump will depend on the height through which the fluid is raised, the
pressure required at delivery point, the length and diameter of the pipe, the rate of
flow, together with the physical properties of the fluid, particularly its viscosity and
density.

The pumping of liquids such as sulphuric acid or petroleum products from bulk store
to process buildings, or the pumping of fluids to the reaction units and through heat
exchangers are examples for the use of pumps |n the process industries

: il

Fundamental parameters are used to analyze the performance of a pump:
1- The mass flow rate of fluid through the pump, for incompressible flow, it is
more common to use volume flow rate rather than mass flow rate.
2- The performance of a pump is characterized by its net head H, defined as the
change in Bernoulli head between the inlet and outlet of the pump

2 2
pln Pout Uout
+ O et H =—+ —+z
pg 2g in pump 09 Zg out
H =(£+u_2+z) _(Lui“) |
pame e \pg - 2g oue  \PI 29 o

The dimension of net head is length, and it is often listed as an equivalent column
height of water, even for a pump that is not pumping water.
By dimensional reasoning, we must multiply the net head of Eq. 1 by mass flow rate
and gravitational acceleration to obtain dimensions of power (W). Thus,

VVpump =mgH = QpgH

We define pump efficiency hpump as the ratio of useful power to supplied power;
Mech. energy increase of the fluLd(Wpump) _ pgHQ

Npump = : ;
Wsupplled Wsupplled
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Pump Performance Curves and Matching a Pump to a Piping System

The maximum volume flow rate through a pump occurs when it's net head is zero, H
= 0; this flow rate is called the pump’s free delivery. The free delivery condition is
achieved when there is no flow restriction at the pump inlet or outlet, in other words
when there is no load on the pump. At this operating point, Q is large, but H is zero;
the pump’s efficiency is zero because the pump is doing no useful work, as is clear
from Eq. 2. At the other extreme, the shutoff head is the net head that occurs when
the volume flow rate is zero, Q = 0, and is achieved when the outlet port of the pump

BEP

is blocked off. Under these conditions, H is large
but Q is zero; the pump’s efficiency (Eq. 2) is 4 Shutoff head i

again zero, because the pump is doing no useful :/
work. Between these two extremes, from shutoff N
to free delivery, the pump’s net head is occurring. - e
The pump’s efficiency reaches its maximum
value somewhere between the shutoff condition
and the free delivery condition; this operating
point of maximum efficiency is appropriately 7
called the best efficiency point (BEP), and is !
notated by an asterisk (H*, Q*). Curves of Hand | o—
Npump, @S functions of Q are called pump 0 Free delivery

H, 7]'|1|1|11|1s
-~

|
|
|
|
|
|
|
|
|
1
|
|
|

S q

performance curves.
It is important to realize that for steady conditions, a pump can operate only along its
performance curve. Thus, the operating point of a piping system is determined by
matching system requirements (required net head) to pump performance (available net
head). In a typical application, Hyequired aNd Havailable Match at one unique value of flow

rate, this is the operating point or duty point of the
system. .
The volume flow rate of a piping system is
established where Hrequired = Havailable-

i Pump performance curve

Operating

H

available

For a given piping system with its major and System )

minor losses, elevation changes, etc., the required curve i

net head increases with volume flow rate. I i

On the other hand, the available net head of most Hiies | !

pumps decreases with flow rate, as in Fig. o ! ;
BEP

0

Hence, the system curve and the pump performance curve intersect as sketched in the
Fig. above, and this establishes the operating point. If we are lucky, the operating
point is at or near the best efficiency point of the pump.

In most cases, however, as illustrated in Fig, the pump does not run at its optimum
efficiency. If efficiency is of major concern, the pump should be carefully selected (or
a new pump should be designed) such that the operating point is as close to the best
efficiency point as possible.

For a general piping system with elevation change, major and minor losses, and fluid
acceleration, we begin by solving the energy equation for the required net head

Hrequired
2

2
P —p1 U2 — U
+ + (22 — z1) + hytotar

Pg 29

Hrequired =

\Al



*When the fluid is a gas, such as in ventilation and air pollution control problems, the
elevation term is almost always negligible.

The most common situation is that an engineer
selects a pump that is somewhat higher than
actually required. The volume flow rate
through the piping system is then a bit larger
than needed, and a valve is installed in the line
so that the flow rate can be decreased as @V .
v 1~

necessary.
Reservoir .
Valve

Example 1: A petroleum product is pumped at a rate of 2.525 x 10° m°/s from a
reservoir under atmospheric pressure to 1.83 m height. If the pump 1.32 m height
from the reservoir, the discharge line diameter is 4 cm and the pressure drop along its
length 3.45 kPa. The gauge pressure reading at the end of the discharge line 345 kPa.
The pressure drop along suction line is 3.45 kPa calculate:-

(i) The required net head of the system (ii) The required power of the system (iii) The
NPSH

Take that: the density of this petroleum product p=879 kg/m®, the dynamic viscosity
u=6.47 x 10 Pa.s, and the vapor pressure Pv= 24.15 kPa.

f F
IZd
T 1.-83 1

S

=4 d

Solution:-
(i) The required net head of the system
ah=az+ 20 By
09 Zg L total
The total elevation=
AZ =183 m

The pressure head=
AP  345x 103

by 879x981  tom
The velocity head=
u, = 0
Q 2525x1073 m
u’Z = Z = T[— = 2 —
7 (0.04)2 s
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So
Au? 22 -0
2g 2x9.81
The losses head= hL(suction side) + hL(discharge side)
_3.45x 103 + 3.45 x 10°

879 x 9.81
The required net head of the system - Ah = 1.83 +40+ 0.2+ 0.8 =42.83m

(ii) power required = m X g X hrequiea = P X @ X g X Nrequiea
=879 X 2.525x 1073 X 9.81 X 42.83 = 932.54 W
(iii)see page ( 5)

=02m

=08m

Example 2: A centrifugal pump used to take water from reservoir to another through
800 m length and 0.15 m id pipe. If the difference in two tank is 8 m, calculate the
flow rate of the water and the power required, assume f =0.016. If the available pump
characteristic is

Q(mPh)| 0| 23 | 46 | 69 | 92 |115
Ah(m) | 17| 16 |135|105]| 6.6 | 2.0

n 0 0495|061 |063|053|0.1

Solution:-

(i) The required net head of the system
2

Ah:AZ'{'E‘F_"’thotal

29
L u?
hi totar = fa@
if Qinm?/h) 56.6 X
A Z0_152 3600
56.60\>
By rora = 0.016 X o (3600 = 1.075 x 1073 x Q2
ota 0.15° 2x9.81

Ah =8+ 1.075x 1073 x Q?
So the system curve

Q(m*h) [ 0| 20 | 40 | 60 80
Ah(m) |8|843|9.72|11.87 | 14.88

1
0.9
0.3

07
b‘ﬁ.‘ ..-’/ 0.6
05
s SN 04=
- 03
f’/ \K 02
“;{ - 0_1
1]

0 20 40 60 100 120

5= 8

l_'_'_"‘—-—--

Ah (m)

From Figure
Q=60 m*/h
Ab=118m
n=0.64

™
Y
L~

80
Q (m*h)
I _PMpg _ -
Power required for pump = T = (60)(1 03600 s)(11.8)¥1000)(2.81)/0.64
=3014 KW
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Pump Cavitation and Net Positive Suction Head

When pumping liquids, it is possible for the local pressure inside the pump to fall
below the vapor pressure of the liquid, P,. (Py is also called the saturation pressure
Psat). When P < P, vapor-filled bubbles called cavitation bubbles appear. In other
words, the liquid boils locally, typically on the suction side of the rotating impeller
blades where the pressure is lowest. After the cavitation bubbles are formed, they are

transported through the pump to regions — .

- . - - avitation Ca\‘ltatlon
where the pressure is higher, causing rapid tabbles coliapae fubilestamn
collapse of the bubbles. It is this collapse of
the bubbles that is undesirable, since it Pressure
causes noise, vibration, reduced efficiency, side
and most importantly, damage to the
impeller blades. Repeated bubble collapse .
near a blade surface leads to pitting or f‘i‘(‘l‘;m“
erosion of the blade and cause blade failure.

To avoid cavitation, we must ensure that the

local pressure everywhere inside the pump

stays above the vapor pressure. Since pressure
IS most easily measured (or estimated) at the _&2__;[

inlet of the pump see the Fig, cavitation Reservoir
criteria are typically specified at the pump
inlet. It is useful to employ a flow parameter
called net positive suction head (NPSH),
defined as the difference between the pump’s
inlet stagnation pressure head and the vapor
pressure head,

piping
. Py system .

NPSH = (stagnation pressure) pymp intet — ——
pPg

uZ
NPSH = (i + 2—) B
2 g pump inlet 2

Pump manufacturers test their pumps for cavitation in a pump test facility, the pump
manufacturer then publishes a performance parameter called the required net positive
suction head (NPSHequired), defined as the minimum NPSH necessary to avoid
cavitation in the pump. The measured value of NPSHequireqs VVaries with volume flow
rate.

In order to ensure that a pump does not cavitate, the actual or NPSH must be greater
than NPSHyequirea. It is important to note that the value of NPSH varies not only with
flow rate, but also with liquid temperature, since P, is a function of temperature.
NPSH also depends on the type of liquid being pumped, since there is a unique P,
versus T curve for each liquid.

Example 1/(iii):

Applying Bernoulli equation between (suction point) and the (pump inlet point) we
get:
Psuction P. n uguction P. __ Ppump iniet N uzzmmp inlet

pg 2g + ZsuctionP. — pg 2g

+ Zpump inlet + hL




2
. Ppump inlet Upump inlet
(stagnation pressure)pymp intet =< P P?J + L 22
p ug
suction P. suction P.
= + + (Zsuction P. — Zpump L'nlet) - hL

Joe] 2g

NPSH = (stagnation pressure)pymp inier — Z—;
2
Psuction P. Ugyction P. p
NPSH = ( sucp;)n Suczl;n + (Zsuction P. — Zpump inlet) - hL) - é
NPSH = ( 101325 @ o4+ (0—-132)—0 4) 24150 _ 5,
~ 879 x 9.81 ' *) T 879x981 ™

Pumps in Series and Parallel
When faced with the need to increase volume flow rate or

pressure rise by a small amount, you might consider adding
an additional smaller pump in series or in parallel with the
original pump. While series or parallel arrangement is

acceptable for some applications, arranging dissimilar
pumps in series or in parallel may lead to problems,
especially if one pump is much larger than the other (Fig). Jﬁ

—

(@)

A better course of action is to increase the original pump’s
speed and/or input power (larger electric motor), replace the
impeller with a larger one, or replace the entire pump with a

larger one. = jLJ/
Arranging dissimilar pumps in series Fig (a) may create | \ ﬁ’.‘ )E]E

problems because the volume flow rate through each pump

must be the same, but the overall pressure rise is equal to the 1
pressure rise of one pump plus that of the other. If the pumps have widely different
performance curves, the smaller pump may be forced to operate beyond its free
delivery flow rate, whereupon it acts like a head loss, reducing the total volume flow
rate.

When operated in series, the combined net head is simply the sum of the net heads of
each pump (at a given volume flow rate):

n
Combined net head for n pumps in series: H.ombined = Z H;
1

iz
Arranging dissimilar pumps in parallel Fig (b) may create problems because the
overall pressure rise must be the same, but the net volume flow rate is the sum of that
through each branch. If the pumps are not sized properly, the smaller pump may not
be able to handle the large head imposed on it, and the flow in its branch could
actually be reversed; this would inadvertently reduce the overall pressure rise. In
either case, the power supplied to the smaller pump would be wasted.

When two or more identical (or similar) pumps are operated in parallel, their
individual volume flow rates (rather than net heads) are summed

n
Combined capacity for n pumps in parallel: Qcombined = Z Q;
i=1

\a



Shutoff head of combined pumps n Shutoff head of combined pumps

] | | H—
] I I ]
1 D~ == | .
d | Pump 1 should | | ] Qsonly
1 H +H,+H, | be shut off and | ] T Pump 2 sh-:l)uld be shut‘off

| -
. ‘ Ibypassc—:d | Pump 2 C— __.___|.____|____‘____
1 Combined net head”] | | should T ~ QiQs b Pump1should

] | be shut | 3 \ \L\ be shut off
] \\ H,+H; | | off and Zi_ _\__ T -i_ ____‘____
———— | | bypassed ; \A \ \ o 4@ Qs
— | | ] N
i
:—“5} I \ ! Hy only 7 Pump?2 \ \ Pmnp|3 >\
- ™= \ T — \
5 Pump1 Pump 2/\ | \ i Y \ Combined capacity
] | Pumpf% ~J ~ 5 Pump1 \
Illlllll“‘l‘l IR rrT " OII\I\III\II\IIIII\IIIII
0 . . Q 0 Q
Free delivery of combined pumps Free delivery of combined pumps
Types of Pumps

Pumps can be classified into: -
1- Positive displacement pumps. 2- Dynamic Pumps

1-Positive-Displacement Pumps
People have designed numerous positive-displacement pumps throughout the
centuries, like:

1- The piston Pump
2- The Gear Pump
3- The Cam Pump
4- The Screw pumps
5- Rotary pump

JIInIIen:;
10

Gear pump Screw pump

135°

Two-lobe rotary pump

A%



In each design, fluid is sucked into an expanding volume and then pushed along as
that volume contracts, but the mechanism that causes this change in volume differs
greatly among the various designs.

These pumps are ideal for high-pressure applications like pumping viscous liquids or
thick slurries, and for applications where precise amounts of liquid are to be dispensed
or metered, as in medical applications.

To illustrate the operation of a positive-displacement pump, the sketch four phases for
half cycle of a simple rotary pump with two lobes (see the Fig. above).

Gaps exist between the rotors and the housing and between the lobes of the rotors
themselves, as illustrated in Fig of rotary pump.

Fluid can leak through these gaps, reducing the pump’s efficiency. High viscosity
fluids cannot penetrate the gaps as easily; hence the net head (and efficiency) of a
rotary pump generally increases with fluid viscosity. This is one reason why rotary
pumps (and other types of positive-displacement pumps) are a good choice for
pumping highly viscous fluids and slurries. They are used, for example, as automobile
engine oil pumps and in the foods industry to pump heavy liquids like syrup, tomato
paste, and chocolate, and slurries like soups.

Positive-displacement pumps have many advantages over dynamic pumps.

For example:

1- A positive-displacement pump is better in handling shear sensitive liquids
since the induced shear is much less than that of a dynamic pumps operating at
similar pressure and flow rate. Blood is a shear sensitive liquid, and this is one
reason why positive-displacement pumps are used for artificial hearts.

2- A well-sealed positive-displacement pump can create a significant vacuum
pressure at its inlet, even when dry, and is thus able to lift a liquid from several
meters below the pump. We refer to this kind of pump as a self-priming pump

3- The rotor(s) of a positive- displacement pump run at lower speeds than the
rotor (impeller) of a dynamic pump at similar loads, extending the useful
lifetime of seals, etc.

There are some disadvantages of positive-displacement pumps

1- Their volume flow rate cannot be changed unless the rotation rate is changed.
(Since most AC electric motors are designed to operate at one or more fixed
rotational speeds.)

2- They create very high pressure at the outlet side, and if the outlet becomes
blocked, ruptures may occur or electric motors may overheat. Overpressure
protection (e.g., a pressure-relief valve) is often required for this reason.

3- Because of their design, positive-displacement pumps sometimes deliver a
pulsating flow, which may be unacceptable for some applications.

2-Dynamic Pumps

There are two main types of dynamic pumps that involve rotating blades called
impeller blades or rotor blades, which impart momentum to the fluid. They are
classified by the manner in which flow exits the pump: centrifugal flow and axial
flow. In a centrifugal-flow pump, fluid enters axially (in the same direction as the
axis of the rotating shaft) in the center of the pump, but is discharged radially (or
tangentially) along the outer radius of the pump casing. For this reason centrifugal
pumps are also called radial-flow pumps. In an axial-flow pump, fluid enters and
leaves axially, typically along the outer portion of the pump. Here we will focus on
the centrifugal pumps as they most common type

YA
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Centrifugal Pumps

Centrifugal Pumps
Centrifugal pumps and blowers can be easily identified by their snail-shaped casing,
called the scroll (Fig). They are found all around your home—in clothes washers and
dryers, vacuum cleaners, leaf blowers, furnaces, etc. They are used in cars—the water
pump in the engine, the air blower in the heater/air conditioner unit, etc. Centrifugal
pumps are used in industry as well; they are used in building ventilation systems,
washing operations, cooling ponds and cooling towers, and in numerous other
industrial operations in which fluids are pumped.
A schematic diagram of a centrifugal pump is shown in Fig. Note that a shroud
often surrounds the impeller blades. Fluid enters axially through the hollow
middle portion of the pump (the eye), after which it reach the rotating blades. It
acquires tangential and radial velocity by momentum transfer with the impeller
blades, by so-called centrifugal forces.
The flow leaves the impeller after gaining both speed and pressure as it is flung
radially outward into the scroll (also called the volute). As sketched in Fig, there
by further increasing the fluid’s pressure, and to combine and direct the flow from
all the blade passages toward a common outlet. As mentioned previously, if the
flow is steady in the mean, if the fluid is incompressible, and if the inlet and outlet
diameters are the same, the average flow speed at the outlet is identical to that at
the inlet. Thus, it is not necessarily the speed, but the pressure that increases from
inlet to outlet through a centrifugal pump.

Side view Frontal view

\)




There are three types of centrifugal pump, based on impeller blade geometry, as
sketched in Fig: a) backward-inclined blades b) radial blades c) forward-inclined
blades. Centrifugal pumps with backward-inclined blades (Fig. a) are the most
common. These yield the highest efficiency of the three because fluid flows into and
out of the blade passages with the least amount of turning.

(b)
backward
inclined blades

radial blades forward
inclined blades

Exercisel: It is required to pump cooling water from storage pond to a condenser in a
process plant situated 10 m above the level of the pond. (200 m of 74.2 mm id) pipe in
between and the pump has the characteristics given below. The head loss in the
condenser is equivalent to 16 velocity heads based on the flow in the 74.2 mm pipe. If
the friction factor = 0.024, estimate the rate of flow and the power to be supplied to
the pump assuming n = 0.5

3
Q (m/s) 0.0028 0.0039 0.005 0.0056 0.0059

Ah(m) 232 213 189 152 11.0
Hint:
24
) o) <
En
= \I
T AN
1g =
14 ._,/‘ \\
. A
10 v
0.003 0.004 0.005 0.006 0.007
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CHAPTER SEVEN
COMPRESSIBLE FLOW

Introduction

We have limited our consideration so far to flows for which density variations and
thus compressibility effects are negligible. In this chapter, we lift this limitation and
consider flows that involve significant changes in density. Such flows are called
compressible flows, and they are frequently encountered in devices that involve the
flow of gases at very high speeds. Compressible flow combines fluid dynamics and
thermodynamics in that both are necessary to the development of the required
theoretical background.

Stagnation properties

Enthalpy of a fluid defined per unit mass as h = u + Pv. Whenever the kinetic and
potential energies of the fluid are negligible, as is often the case, the enthalpy
represents the total energy of a fluid. For high-speed flows, the potential energy of the
fluid is still negligible, but the kinetic energy is not. In such cases, it is convenient to
combine the enthalpy and the kinetic energy of the fluid into a single term called

stagnation (or total) enthalpy h,, defined per unit mass as
2

V
ho =h+ 7 1

Where h is the static enthalpy

Notice that the two enthalpies are identical when the kinetic energy of the fluid is
negligible.

Consider the steady flow of a fluid through a duct such as a nozzle, diffuser, or some
other flow passage where the flow takes place adiabatically and with no shaft or
electrical work. Assuming the fluid experiences little or no change in its elevation and
its potential energy, the energy balance relation (Ein = Eou) for this single-stream
steady-flow device reduces to

h+V12—h +V22 2
)
h01=h02

Any increase in fluid velocity in these flow devices creates an equivalent decrease in
the static enthalpy of the fluid.
If the fluid were brought to a complete stop, then the velocity at state 2 would be zero

and Eq. 2 would become
2

Vi
h1 + 7 = hz = h’OZ
During a stagnation process, the kinetic energy of a fluid is converted to enthalpy

which results in an increase in the fluid temperature and pressure. The properties of a
fluid at the stagnation state are called stagnation properties (stagnation temperature,
stagnation pressure, stagnation density, etc.). The stagnation state and the stagnation
properties are indicated by the subscript o.

When the fluid is approximated as an ideal gas with constant specific heats, its

enthalpy can be replaced by ¢, T and Eq. 1 is expressed as
V2
cpTy = cpT + >
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2

T, —T+V
o 2¢,

Here, T, is called the stagnation (or total) temperature, and it represents the
temperature of an ideal gas attains when it is brought to rest adiabatically.

The term V2/2cp corresponds to the temperature rise during such a process and is
called the dynamic temperature.

For example
)
the dynamic temperature of air flowing at 100 m/s is Temger_ature f
2 Tis€ auring
(100 m/s) = 5K stagnation
(2 x 1005]/kg - K) — \
Therefore, when air at 300 K and 100 m/s is  —_ 305K
brought to rest adiabatically its temperature rises _-_/ 100K
to the stagnation value of 305 K (Fig). _
—~ AR
— 100 m/s

Note that for low-speed flows, the stagnation and static temperatures are practically
the same.
For ideal gases with constant specific heats, P, is related to the static pressure of the

fluid by:
P, T, k/(k—1)
| - pe7)
The ratio of the stagnation density to static density is expressed as:
po _ (To\"/* 7V
2= (7)

Example: air at a speed of 250 m/s and pressure of 54.05 kPa and its temperature is
255.7 K. determine: the stagnation pressure

Sol:
2
T =T +—
0 + 2¢,
T = 255.7 + 250° 286.8 K
o " 2%x1005 '
Po To k/(k-1)
7= (7)
P, 286.8\ 14/ (14-1)
54.05 (255.7)
P, = 80.77 kPa
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Speed of sound and Mach number
An important parameter in the study of compressible flow is the speed of sound c, (or

the sonic speed), defined as the speed at which an infinitesimally small pressure wave
travels through a medium. The pressure wave may be caused by a small disturbance,
which creates a slight rise in local pressure.
Which is related to other fluid properties as:

dpP
dp
¢ = VkRT

Where K is the specific heat ratio of the gas k = Z—” and R is the specific gas constant

R =¢, —c,.

A second important parameter in the analysis of compressible fluid flow is the Mach
number Ma. It is the ratio of the actual speed of the fluid (or an object in still fluid) to
the speed of sound in the same fluid at the same state:

Ma = —
c

Note that the Mach number depends on the speed of sound, which depends on the
state of the fluid.

Fluid flow regimes are often described in terms of the flow Mach number.

The flow is called sonic when Ma = 1, subsonic when Ma < 1, supersonic when Ma >
1 and hypersonic when Ma >> 1
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EXAMPLE Gas Flow through a Coenverging-Diverging Duct

Carbon dioxide flows steadily through a varying cross-sectional area duct
such as a nozzle shown in Fig. at a mass flow rate of 3.00 kg/s. The
carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with
a low velocity, and it expands in the nozzle to an exit pressure of 200 kPa.
The duct is designed so that the flow can be approximated as isentropic.
Determine the density, velocity, flow area, and Mach number at each loca-
fion along the duct that correspands to an overall pressure drop of 200 kPa.

SOLUTION Carbon dioxide enters a varying cross-sectional area duct at
specified conditions, The flow properties are to be determined along the duct.

Assumptions 1 Carbon dioxide is an ideal gas with constant specific heats
at room temperature, 2 Flow through the duct is steady, one-dimensional,
and isentropic,

Properties  For simplicity we use ¢, = 0.846 klikg-K and & = 1.283 throughout
the caleulabions, which are the constant-pressure specihic haal and specific
heat ratio values of carbon dioxide at room lemperature. The gas canstant of
carban dioxide is £ = 0.1889 klke K.

Analysis We note that the inlet temperature is nearly equal to the stagna-
tion temperature since the inlet velocity is small. The flow is isentropic, and
thus the stagnation temperature and pressure throughout the duct remain
constant. Therefore,

Ta= T, = 200°C = 473 K
and
Po= P = 1400 kPa
To illustrate the solution procedure, we calculate the desired properties

at the locatien where the pressure is 1200 kPa, the first location that cor-
responds to a pressure drop of 200 kPa.

P [ l:m k.P (128 =131 230
T = r,,( ) — (473 K}(—'"') - 457K

P, 1400 kPa
V= V24T, - D
1060 m%"s‘)
= , L0 S TE N — 457 —_—
\/ZZEUS-IGI:J S KN4TIK 3 K.}( ik
= 1645 ms
Fram e ideal-gas relalion,
_ 1200 kPa _ -
P~ RT T (01850 kPamikg K)QsT Ky o Rafm
From the mass flow rate relation,
1 300 kpfs P . 2
= — = = . - = |3, 2
A oV (139 ke/m 1615 mvsy 130 % 107" m L3 1 e
Fram Egs.
10K md's®
¢ = VART = \[(1.289)0.189 K)kg K457 m(¢) = 3336mis
1 kg
v 1615 mis
- — N — B il
Ma — ™ Stk 0493
The rosults for the othor prossure stops are summarized in Table =1 and

are plotted in Fip.

Diseussienr Note that as the pressure decreases, the temperature and spead
of sound decrease while the fluid velocity and Mach number increase in the
flow direction. The density decreases slowly at first and rapidly later as the
fluid velocity increases.

Stagnation

TN hi= 300 kgls

14080 kPa
200°C
€O,

AMag TV

[TABLE. -1

Variation of fluid properties in flow direction in the duct deseribed in Example 12-2

far m = 3 kafs = constant

P kPa T K ¥, mis p, kg/m?® e, m's A, em? Ma
1400 473 4] 1&.7 3394 o L]
1200 457 164.5 13.9 3336 13.1 0.493
1000 439 240.7 12.1 3269 10.3 0.736
800 417 306.6 10.1 3188 9,64 0,962
FLiv 413 317.2 9.82 3172 9.63 1.000
600 391 3714 8.12 3087 10,0 1.203
400 an7 441.9 593 2950 11.5 1.498
200 306 5309 346 27249 16.3 1.946




We note from the above Example that the flow area decreases with decreasing
pressure down to a critical-pressure value where the Mach number is unity, and then it
begins to increase with further reductions in pressure. The Mach number is unity at
the location of smallest flow area, called the throat.

Note that the velocity of the fluid keeps increasing after passing the throat although
the flow area increases rapidly in that region. This increase in velocity past the throat
is due to the rapid decrease in the fluid density.

The flow area of the duct considered in this example first decreases and then
increases. Such ducts are called converging—diverging nozzles.

These nozzles are used to accelerate gases to supersonic speeds

Variation of Fluid Velocity with Flow Area
It is clear from above Example that the couplings among the velocity, density, and
flow areas for isentropic duct flow are rather complex.
We begin our investigation by seeking relationships among the pressure, temperature,
density, velocity, flow area, and Mach number for one-dimensional isentropic flow.
Consider the mass balance for a steady-flow process:

m = pAV = constant
Differentiating and dividing the resultant equation by the mass flow rate, we obtain

dp N dA N av.
0 ATV T ¢
From the energy balance
hy + N _ h, + V.’
i T2
So
2
h + - = constant
Differentiate
dh+VdV =0 b
Solving b for dVV:
dav._ dpP
v pV2
Substitute b in a we get
dp dA dP
p A pVZ
dA _dpP dp
A pVz p
dA dP( 1 dp)
A~ p\vzap) °©
Where: 22 = L
w oo dA  dP
— = 1— Ma?
YR ( a“) d

This is an important relation for isentropic flow in ducts since it describes the
variation of pressure with flow area. We note that A, p, and V are positive quantities.

For subsonic flow (Ma< 1), the term (1 — Ma?) is positive; and thus d4 and dP must
have the same sign. That is, the pressure of the fluid must increase as the flow area of
the duct increases and must decrease as the flow area of the duct decreases. Thus, at

Ao




subsonic velocities, the pressure decreases in converging ducts (subsonic nozzles).
And increases in diverging ducts (subsonic diffusers)

In supersonic flow (Ma > 1), the term (1 — Ma?) is negative, and thus dA and dP
must have opposite signs. That is, the pressure of the fluid must decrease as the flow
area of the duct increases. Thus, at supersonic velocities, the pressure decreases in
diverging ducts (supersonic nozzles). And increases in converging ducts (supersonic

diffusers)
To accelerate a fluid, we must use a converging nozzle at subsonic velocities and a

diverging nozzle at supersonic velocities.
The highest velocity we can achieve by a converging nozzle is the sonic velocity,

which occurs at the exit of the nozzle.

(If we extend the converging nozzle by further decreasing the flow area, in hopes of
accelerating the fluid to supersonic velocities, we are disappointed).

Based on Eq. d, which is an expression of the conservation of mass and energy
principles, we must add a diverging section to a converging nozzle to accelerate a
fluid to supersonic velocities. The result is a converging— diverging nozzle. Where the
Mach number increases as the flow area of the nozzle decreases, and then reaches the
value of unity at the nozzle throat. The fluid continues to accelerate as it passes

through a supersonic (diverging) section.
Noting that m = pAVfor steady flow, we see that the large decrease in density makes

acceleration in the diverging section possible.

Property relations for isentropic flow of ideal gases
Next we develop relations between the static properties and stagnation properties of

an ideal gas in terms of the specific heat ratio k and the Mach number Ma. We assume
the flow is isentropic and the gas has constant specific heats.
We have:

VZ
T,=T+-—
© +Zcp
To_1+ V2
T 2T

Noting that cp = kR/(k — 1), ¢ = vV kRT,and Ma = V /c

(/_
V2 V2 (k— D\ (VZ\ (k= 1y , s
= = — | = Ma
2¢,T  2[kR/(k — DIT AV 2 \T’ff

I
>‘:‘l"j
|
2]

Substitution yields ) 1;
T, k—1 £ _4_ 5
?0 = 1 + (( 5 ) Ma2 II|I ip = €p
Which is the desired relation between T, and T. The ratio of ||' pAImES SE
the stagnation to static pressure is obtained by: .r £oq-2
P, (k= 1)y ,\/*D | 2 pei
% (10 (52 b
)
The ratio of the stagnation to static density is expressed as: |' g /k —1
Po (k= 1y - \YED f 7
—=<1+< )Maz) || € =
p 2 | P k=1
Numerical values of % P—P" and %" are listed versus the Mach \‘

number in Table 2 for k = 1.4, which are very useful for practical compressible flow
calculations involving air.
AT



= Pincreases

p decreases

Subsonic nozzle

(1) Subsonic flow

™ P decreases

Supersonic nozzle Supersonic diffuser

(b) Supersonic flow

FIGURE
Variation of flow properties
in subsonic and supersonic nozzles
and diffusers.

The properties of a fluid at a location where the Mach number is unity (the throat) are
called critical properties and the ratios in Egs. above through

are called critical ratios when Ma = 1 (Fig). It is standard
practice in the analysis of compressible flow to let the
superscript (*) represent the critical values. Setting Ma = 1

in Eqs We get:
10 (“ I 1)

2 k/(k-1) Throat
=G+

1/(k=1)
- (@)

These ratios are evaluated for various values of k and are

Throat

(if Ma, = 1)

listed in Table 3.

TABLE 3
The critical-pressure, critical-temperature, and critical-density ratios for
isentropic flow of some ideal gases
Superheated Hot products Monatomic
steam, of combustion, Air, gases,
k=13 k=1.33 k=14 k=1.667
&
% 0.5457 0.5404 0.5283 0.4871
0
T*
I 0.8696 0.8584 0.8333 0.7499
1]
p*
o 0.6276 0.6295 0.6340 0.6495
0
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]
EXAMPLE Critical Temperature and Pressure in Gas Flow m

]
Calculate the critical pressure and temperature of carbon dioxide for the flow g
conditions described in Example 1

SOLUTION For the flow discussed in Example 1
and temperature are to be calculated.
Assumptions 1 The flow is steady, adiabatic, and one-dimensional. 2 Carbon
dioxide is an ideal gas with constant specific heats.

Properties The specific heat ratio of carbon dioxide at room temperature is
k= 1.289.

Analysis The ratios of critical to stagnation temperature and pressure are
determined to be

™2 2
T, k+1 1289+ 1

, the critical pressure

= 0.8737

P#®

128901289 — 1}
= 0.5477
5 )

2) k=13 )
_(k+l) _(1.289+I

Noting that the stagnation temperature and pressure are, from Example 1
T, = 473 K and F; = 1400 kPa, we see that the critical temperature and
pressure in this case are

T+ = 0.8737T, = (0.8737}473K) = 413 K
P¥ = 0.5471F, = (0.3477)1400 kPa) = 767 kPa

Discussion Mote that these values agree with those listed in the bth row of
Table -1, as expected. Also, property values other than these at the throat
would indicate that the flow is not critical, and the Mach number is not unity.

Py=1.4MPa
T,=473K

I

|

|

|
P‘i‘
i

FIGURE

Schematic for Example

Effects of back pressure for nozzles flow
1- Converging Nozzles

Consider the subsonic flow through a converging nozzle as shown in Fig.

The nozzle inlet is attached to a reservoir at pressure P,
and temperature T,. The reservoir is sufficiently large so
that the nozzle inlet velocity is negligible.

Since the fluid velocity in the reservoir is zero and the
flow through the nozzle is approximated as isentropic,
the stagnation pressure and stagnation temperature of
the fluid at any cross section through the nozzle are
equal to the reservoir pressure and temperature,
respectively.

Now we begin to reduce the back pressure and observe
the resulting effects on the pressure distribution along
the length of the nozzle, as shown in Fig.

1- If the back pressure Py is equal to P1, which is equal to
Py, there is no flow and the pressure distribution is
uniform along the nozzle.

2- When the back pressure is reduced to P, the exit plane

pressure P, also drops to P,. This causes the pressure
along the nozzle to decrease in the flow direction.

3- When the back pressure is reduced to P3; (= P*, which is
the pressure required to increase the fluid velocity to the

Reservoir | @

Lowest exit "'/—4 P < p*
pressure

speed of sound at the exit plane or throat), the mass flow reaches a maximum value
and the flow is said to be choked. Further reduction of the back pressure to level P4 or

AN




below does not result in additional changes in the pressure distribution, or anything
else along the nozzle length.

Under steady-flow conditions, the mass flow rate through the nozzle is constant and is
expressed as

= pAV = (%)A(Ma'VkRT} — PAMa, |-=

RT

AMaP,VkI(RT,)

T+ (k — 1)Ma¥/2)@® D]

Fil]

The mass flow rate through a nozzle is a maximum when Ma = 1 at the throat.
Denoting this area by A* we obtain an expression for the maximum mass flow rate by
substituting Ma=1

llll E 2 (E+ 1 20E—17]
o =40 2 (57)

For all back pressures lower than the critical pressure P*, the pressure at the exit plane
of the converging nozzle P, is equal to P*, the Mach number at the exit plane is unity,
and the mass flow rate is the maximum (or choked) flow rate. Because the velocity of
the flow is sonic at the throat for the maximum flow rate, a back pressure lower than
the critical pressure cannot be sensed in the nozzle upstream flow and does not affect
the flow rate.

TABLE 2

One-dimensional isentropic compressible flow functions for an ideal

gas with k= 1.4
Ma Ma™ AA PiPy olpg I
1] 0 = 1.0000 1.0000 1.0000

0.1 0.1094 5.8218 0.9930 0.9950 0.9980
0.2 0.2182 2.9635 0.9725 0.9803 0.9921
0.3 0.3257 2.0351 0.9395 0.9564 0.9823
0.4 0.4313 1.5501 0.8956 0.9243 0.96%0
0.5 0.5345 1.3398 0.8430 0.8852 0.9524
0.6 0.6348 1.1882 0.7840 0.8405 0.9328
0.7 0.7318 1.0944 0.7209 0.7916 0.9107
0.8 0.8251 1.0382 0.6560 0.7400 0.88650
0.9 0.9146 1.0089 0.5913 0.6870 0.8606
0 1.0000 1.0000 0.5283 0.6339 0.8333
2 1.1583 1.0304 0.4124 0.5311 0.7764
4 1.2999 1.1149 0.3142 0.4374 0.7184
.6 1.4254 1.2502 0.2353 0.3557 0.6614
8 1.5360 1.4390 0.1740 0.2868 0.6068
0 1.6330 1.6875 0.1278 0.2300 0.5556
.2 1.7179 2.0050 0.0935 0.1841 0.5081
2.4 1.7922 24031 0.0684 0.1472 0.4647
2.6 1.8571 2.8960 0.0501 0.1179 0.4252
2.8 1.9140 3.5001 0.0368 0.0946 0.3894
3.0 1.5640 4.2346 0.0272 0.0760 0.3571
5.0 2.2361 25.000 0.0019 0.0113 0.1667
o 2.2495 o 0 0 0]
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T,=400K
P, =100 kPa
Ma, = 0.3
AI

FIGURE
Schematic for Example

EXAMPLE Effect of Back Pressure on Mass Flow Rate

Air at 1 MPa and 600°C enters a converging nozzle, shown in Fig.

with a velocity of 150 m/s. Determine the mass flow rate through the nozzle
for a nozzle throat area of 50 cm? when the back pressure is (8 0.7 MPa
and (£) 0.4 MPa.

SOLUTION Air enters a converging nozzle. The mass flow rate of air through
the nozzle is to be determined for different back pressures.

Assumptions 1 Air is an ideal gas with constant specific heats at room tem-
perature. 2 Flew through the nozzle is steady, one-dimensional, and isentropic.
Praperties The constant pressure specific heat and the specific heat ratio of
air are ¢, = 1.005 kl/kg-K and k = 1.4.

Analysis We use the subscripts 7 and f to represent the properties at the
nozzle inlet and the throat, respectively. The stagnation temperature and
pressure at the nozzle inlet are determined

Ty=T,+ oL = g13K + o0 WY ( Lk )—3341(
o= hit o = * 2(1.005 KIkgK) \ 1000 m¥/s? ) ~
Tm)h"[t—l} (884 K)lm‘cl.ﬂl—n
p,=p[% = (1 MPa)| 2> — 1,045 MPa
& ‘(T. (IMPa)\ g7k

1

These stagnation temperature and pressure values remain constant through-
out the nozzle since the flow is assumed to be isentropic. That is,
T, =Ty =884K and F=PF;,=1045MPa
The critical-pressure ratio i1s determined from Table 3.
be P*F, = 0.5283.

{a} The back pressure ratio for this case is

P, 0.IMPa
P, 1045MPa

which is greater than the critical-pressure ratio, 0.5283. Thus the exit plang|
pressure (or throat pressure P) is equal to the back pressure in this case.
That is, B, = P, = 0.7 MPa, and R /F, = 0.670. Therefore, the flow is not|
choked. From Table A-13 at P, /F, = 0.670, we read Ma, = 0.778 and T,/T; =
0.892.

= 0.670

The mass flow rate through the nozzle can be calculated from
But it can also be determined in a step-by-step manner as follows:

T, = 0.892T, = 0.892(884 K) = 7885 K

_ A 700 kPa
Pt = RT, ~ (0287 kPa-m*/kg-K)(7885 K)

= 3.093 kg/m®

V, = Mag, = Ma,\/kRT,

2
= (0.??81\/ (1.4)(0.287 kI/kg K)(788.5 K) (M)
1klkg

= 4379 mfs
Thus,
m = p AV, = (3.093 kg/m*)(50 > 107* m?)(4379 mfs) = 6.77 kgss
() The back pressure ratio for this case is

P,  04MPa
b= T8 = 0,383
P, 1045MPa

which is less than the critical-pressure ratio, 0.5283. Therefore, sonic condi-

tions exist at the exit plane (threat) of the nozzle, and Ma = 1. The flow is
choked in this case, and the mass flow rate through the nozzle is calculated

I3 3\ D21
= A*P .
- N RT\k + 1)

= (50 X 10~* m)(1045 kpa:-\f 14 ( 2 )m's
(0287 Kz K)(884 K) \ 14 + 1

= 7.10 ke/s
since kPa-m*Vkl/kg = /1000 kg/s.

Discussign This is the maximum mass flow rate through the nozzle for the
specified inlet conditions and nozzle threat area.




2- Converging-Diverging Nozzles
When we think of nozzles, we ordinarily think of flow passages whose cross-sectional
area decreases in the flow direction. However, the highest velocity to which a fluid
can be accelerated in a converging nozzle is limited to the sonic velocity (Ma = 1),
which occurs at the exit plane (throat) of the nozzle. Accelerating a fluid to supersonic
velocities (Ma > 1) can be accomplished only by attaching a diverging flow section to
the subsonic nozzle at the throat. The resulting combined flow section is a
converging—diverging nozzle
Forcing a fluid through a converging—diverging nozzle is no guarantee that the fluid
will be accelerated to a supersonic velocity. In fact, the fluid may find itself
decelerating in the diverging section instead of accelerating if the back pressure is not
in the right range. The state of the nozzle flow is determined by the overall pressure
ratio Py /P,. Therefore, for given inlet conditions, the flow through a converging—
diverging nozzle is governed by the back pressure Py, as will be explained.

Consider the converging—diverging nozzle

shown in Fig. A fluid enters the nozzle !
with a low velocity at stagnation pressure } Throat R
Po- fa I I e
When P, = P, (case A), there is no flow |[V=0; : |
through the nozzle. This is expected since I ! 7
the flow in a nozzle is driven by the I ! !
pressure difference between the nozzle b—x I I
inlet and the exit. | |
When P, > P, > Pc, the flow remains ! !
subsonic throughout the nozzle, and the P ! | B
mass flow is less than that for choked flow. I A e
The fluid velocity increases in the first | %o I 71 P4 | Subsonic flow
(converging) section and reaches a | ol Va pat nozzle exi
maximum at the throat (but Ma < 1). : D: Pe Subsonic flaw
However, most of the gain in velocity is L R ——1 Fo fat nozzle exit
lost in the second (diverging) section of the Sonic flowr | - (shock in nozzle)
nozzle, which acts as a diffuser. The atthroat | ' | © | supersonic flow
pressure decreases in the converging i Shock ~— & -";“G: Fe oL et )
section, reaches a minimum at the throat, 0 : —C

. . Inlet Throat Exit x
and increases at the expense of velocity in |
the diverging section. Ma | Shock g
When Py, = P, the throat pressure becomes Sonic flow | | | Supersonic flow
P* and the fluid achieves sonic velocity at at throat | ?ﬁgﬁfﬁmmley
the throat. Il - —— | Subsonic Mlow
When Pc > P, > Pg, the fluid that achieved at nozzle exit
a sonic velocity at the throat continues ':Ss:t'j:nkn;:;f“
accelerating to supersonic velocities in the at nozzle exit
diverging section as the pressure decreases. 0 | J(noshock) |
This acceleration comes to a sudden stop, Inlet Throat Exit

however, as a normal shock develops at a section between the throat and the exit
plane, which causes a sudden drop in velocity to subsonic levels and a sudden
increase in pressure. The fluid then continues to decelerate further in the remaining
part of the converging—diverging nozzle.

Flow through the shock is highly irreversible, and thus it cannot be approximated as
isentropic.
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The normal shock moves downstream away from the throat as Py, is decreased, and it
approaches the nozzle exit plane as Py, approaches Pe.

When Py, = Pg, the normal shock forms at the exit plane of the nozzle.

The flow is supersonic through the entire diverging section in this case, and it can be
approximated as isentropic. However, the fluid velocity drops to subsonic levels just
before leaving the nozzle as it crosses the normal shock.

When Pg > Py, the flow in the diverging section is supersonic, and the fluid expands to
Pr at the nozzle exit with no normal shock forming within the nozzle.

Examplel: Air in an automobile tire is maintained at a
pressure of 220 kPa (gage) in an environment where the
atmospheric pressure is 94 kPa. The air in the tire is at the
ambient temperature of 25°C. A 4-mm-diameter leak develops
in the tire as a result of an accident (Fig). Approximating the
flow as isentropic, determine the initial mass flow rate of air
through the leak.

Example2: Air enters a converging-diverging nozzle,
shown in Fig, at 1.0 MPa and 800 K with negligible
velocity. The flow is steady, one-dimensional, and
isentropic with k = 1.4. For an exit Mach number of Ma =2
and a throat area of 20 cm? determine (a) the throat
conditions, (b) the exit plane conditions, including the exit

area, and (c) the mass flow rate through the nozzle.
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